# -*- coding: utf-8 -*- from flask import request, Flask import pdb import numpy as np import json import time import cv2, base64 import argparse import sys, os import torch from PIL import Image import datetime from torchvision import transforms from models.experimental import attempt_load from utils.torch_utils import select_device # from models.modeling import VisionTransformer, CONFIGS from gevent.pywsgi import WSGIServer sys.path.insert(0, ".") import detect import logging.config from skywalking import agent, config SW_SERVER = os.environ.get('SW_AGENT_COLLECTOR_BACKEND_SERVICES') SW_SERVICE_NAME = os.environ.get('SW_AGENT_NAME') if SW_SERVER and SW_SERVICE_NAME: config.init() #采集服务的地址,给自己的服务起个名称 #config.init(collector="123.60.56.51:11800", service='ieemoo-ai-search') #采集服务的地址,给自己的服务起个名称 agent.start() def setup_logging(path): if os.path.exists(path): with open(path, 'r') as f: config = json.load(f) logging.config.dictConfig(config) logger = logging.getLogger("root") return logger logger = setup_logging('utils/logging.json') app = Flask(__name__) app.use_reloader=False parser = argparse.ArgumentParser() #parser.add_argument('--weights', nargs='+', type=str, default='runs/zhanting/yolov5m_finetune/exp4/weights/best.pt', help='model.pt path(s)') parser.add_argument('--weights', nargs='+', type=str, default='../module/ieemoo-ai-zhanting/model/now/best.pt', help='model.pt path(s)') parser.add_argument('--source', type=str, default='../module/ieemoo-ai-zhanting/imgs/1.jpg', help='source') # file/folder, 0 for webcam parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)') parser.add_argument('--conf-thres', type=float, default=0.60, help='object confidence threshold') parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS') parser.add_argument('--device', default='0', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') parser.add_argument('--view-img', type=bool, default=True, help='display results') parser.add_argument('--save-txt', type=bool, default=True, help='save results to *.txt') parser.add_argument('--save-conf', type=bool, default=True, help='save confidences in --save-txt labels') parser.add_argument('--nosave', type=bool, default=True, help='do not save images/videos') parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3') parser.add_argument('--agnostic-nms', type=bool, default=True, help='class-agnostic NMS') parser.add_argument('--augment', type=bool, default=True, help='augmented inference') parser.add_argument('--update', type=bool, default=True, help='update all models') parser.add_argument('--project', default='runs/detect', help='save results to project/name') parser.add_argument('--name', default='exp', help='save results to project/name') parser.add_argument('--exist-ok', type=bool, default=True, help='existing project/name ok, do not increment') #opt = parser.parse_args() opt, unknown = parser.parse_known_args() def init_model(opt): device = select_device(opt.device) #half = device.type != 'cpu' model = attempt_load(opt.weights, map_location=device) stride = int(model.stride.max()) #if half: model.half() model.eval() return model, stride model,stride = init_model(opt) @app.route("/zhanting", methods=['POST']) def get_isempty(): data = request.get_data() ip = request.remote_addr print('------ ip = %s ------' % ip) json_data = json.loads(data.decode("utf-8")) pic = json_data.get("pic") result = {"success": "false", "rst_cls": '-1', } try: imgdata = base64.b64decode(pic) image_path = '../module/ieemoo-ai-zhanting/imgs/1.jpg' file = open(image_path, 'wb') file.write(imgdata) img = cv2.imread(image_path) #pdb.set_trace() if img.shape[0] == 1280: site = np.array([[[0, 1280],[0, 671], [300, 390], [740, 390], [1024, 635], [1024,1280]]], dtype=np.int32) else: site = np.array([[[0, 1024],[0, 571], [313, 365], [949, 367], [1277, 596], [1280, 1024]]], dtype=np.int32) im = np.zeros(img.shape[:2], dtype="uint8") cv2.polylines(im, site, 1, 255) cv2.fillPoly(im, site, 255) mask = im masked = cv2.bitwise_or(img, img, mask=mask) img0 = masked cv2.imwrite("../module/ieemoo-ai-zhanting/imgs/1.jpg",img0) pred = detect.detect(opt, model, stride) logger.info(pred) except Exception as e: logger.warning(e) return pred return pred if __name__ == "__main__": app.run(host='192.168.1.142', port=8000)