update
This commit is contained in:
216
.dockerignore
Executable file
216
.dockerignore
Executable file
@ -0,0 +1,216 @@
|
|||||||
|
# Repo-specific DockerIgnore -------------------------------------------------------------------------------------------
|
||||||
|
#.git
|
||||||
|
.cache
|
||||||
|
.idea
|
||||||
|
runs
|
||||||
|
output
|
||||||
|
coco
|
||||||
|
storage.googleapis.com
|
||||||
|
|
||||||
|
data/samples/*
|
||||||
|
**/results*.txt
|
||||||
|
*.jpg
|
||||||
|
|
||||||
|
# Neural Network weights -----------------------------------------------------------------------------------------------
|
||||||
|
**/*.weights
|
||||||
|
**/*.pt
|
||||||
|
**/*.pth
|
||||||
|
**/*.onnx
|
||||||
|
**/*.mlmodel
|
||||||
|
**/*.torchscript
|
||||||
|
|
||||||
|
|
||||||
|
# Below Copied From .gitignore -----------------------------------------------------------------------------------------
|
||||||
|
# Below Copied From .gitignore -----------------------------------------------------------------------------------------
|
||||||
|
|
||||||
|
|
||||||
|
# GitHub Python GitIgnore ----------------------------------------------------------------------------------------------
|
||||||
|
# Byte-compiled / optimized / DLL files
|
||||||
|
__pycache__/
|
||||||
|
*.py[cod]
|
||||||
|
*$py.class
|
||||||
|
|
||||||
|
# C extensions
|
||||||
|
*.so
|
||||||
|
|
||||||
|
# Distribution / packaging
|
||||||
|
.Python
|
||||||
|
env/
|
||||||
|
build/
|
||||||
|
develop-eggs/
|
||||||
|
dist/
|
||||||
|
downloads/
|
||||||
|
eggs/
|
||||||
|
.eggs/
|
||||||
|
lib/
|
||||||
|
lib64/
|
||||||
|
parts/
|
||||||
|
sdist/
|
||||||
|
var/
|
||||||
|
wheels/
|
||||||
|
*.egg-info/
|
||||||
|
wandb/
|
||||||
|
.installed.cfg
|
||||||
|
*.egg
|
||||||
|
|
||||||
|
# PyInstaller
|
||||||
|
# Usually these files are written by a python script from a template
|
||||||
|
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
||||||
|
*.manifest
|
||||||
|
*.spec
|
||||||
|
|
||||||
|
# Installer logs
|
||||||
|
pip-log.txt
|
||||||
|
pip-delete-this-directory.txt
|
||||||
|
|
||||||
|
# Unit test / coverage reports
|
||||||
|
htmlcov/
|
||||||
|
.tox/
|
||||||
|
.coverage
|
||||||
|
.coverage.*
|
||||||
|
.cache
|
||||||
|
nosetests.xml
|
||||||
|
coverage.xml
|
||||||
|
*.cover
|
||||||
|
.hypothesis/
|
||||||
|
|
||||||
|
# Translations
|
||||||
|
*.mo
|
||||||
|
*.pot
|
||||||
|
|
||||||
|
# Django stuff:
|
||||||
|
*.log
|
||||||
|
local_settings.py
|
||||||
|
|
||||||
|
# Flask stuff:
|
||||||
|
instance/
|
||||||
|
.webassets-cache
|
||||||
|
|
||||||
|
# Scrapy stuff:
|
||||||
|
.scrapy
|
||||||
|
|
||||||
|
# Sphinx documentation
|
||||||
|
docs/_build/
|
||||||
|
|
||||||
|
# PyBuilder
|
||||||
|
target/
|
||||||
|
|
||||||
|
# Jupyter Notebook
|
||||||
|
.ipynb_checkpoints
|
||||||
|
|
||||||
|
# pyenv
|
||||||
|
.python-version
|
||||||
|
|
||||||
|
# celery beat schedule file
|
||||||
|
celerybeat-schedule
|
||||||
|
|
||||||
|
# SageMath parsed files
|
||||||
|
*.sage.py
|
||||||
|
|
||||||
|
# dotenv
|
||||||
|
.env
|
||||||
|
|
||||||
|
# virtualenv
|
||||||
|
.venv*
|
||||||
|
venv*/
|
||||||
|
ENV*/
|
||||||
|
|
||||||
|
# Spyder project settings
|
||||||
|
.spyderproject
|
||||||
|
.spyproject
|
||||||
|
|
||||||
|
# Rope project settings
|
||||||
|
.ropeproject
|
||||||
|
|
||||||
|
# mkdocs documentation
|
||||||
|
/site
|
||||||
|
|
||||||
|
# mypy
|
||||||
|
.mypy_cache/
|
||||||
|
|
||||||
|
|
||||||
|
# https://github.com/github/gitignore/blob/master/Global/macOS.gitignore -----------------------------------------------
|
||||||
|
|
||||||
|
# General
|
||||||
|
.DS_Store
|
||||||
|
.AppleDouble
|
||||||
|
.LSOverride
|
||||||
|
|
||||||
|
# Icon must end with two \r
|
||||||
|
Icon
|
||||||
|
Icon?
|
||||||
|
|
||||||
|
# Thumbnails
|
||||||
|
._*
|
||||||
|
|
||||||
|
# Files that might appear in the root of a volume
|
||||||
|
.DocumentRevisions-V100
|
||||||
|
.fseventsd
|
||||||
|
.Spotlight-V100
|
||||||
|
.TemporaryItems
|
||||||
|
.Trashes
|
||||||
|
.VolumeIcon.icns
|
||||||
|
.com.apple.timemachine.donotpresent
|
||||||
|
|
||||||
|
# Directories potentially created on remote AFP share
|
||||||
|
.AppleDB
|
||||||
|
.AppleDesktop
|
||||||
|
Network Trash Folder
|
||||||
|
Temporary Items
|
||||||
|
.apdisk
|
||||||
|
|
||||||
|
|
||||||
|
# https://github.com/github/gitignore/blob/master/Global/JetBrains.gitignore
|
||||||
|
# Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio and WebStorm
|
||||||
|
# Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839
|
||||||
|
|
||||||
|
# User-specific stuff:
|
||||||
|
.idea/*
|
||||||
|
.idea/**/workspace.xml
|
||||||
|
.idea/**/tasks.xml
|
||||||
|
.idea/dictionaries
|
||||||
|
.html # Bokeh Plots
|
||||||
|
.pg # TensorFlow Frozen Graphs
|
||||||
|
.avi # videos
|
||||||
|
|
||||||
|
# Sensitive or high-churn files:
|
||||||
|
.idea/**/dataSources/
|
||||||
|
.idea/**/dataSources.ids
|
||||||
|
.idea/**/dataSources.local.xml
|
||||||
|
.idea/**/sqlDataSources.xml
|
||||||
|
.idea/**/dynamic.xml
|
||||||
|
.idea/**/uiDesigner.xml
|
||||||
|
|
||||||
|
# Gradle:
|
||||||
|
.idea/**/gradle.xml
|
||||||
|
.idea/**/libraries
|
||||||
|
|
||||||
|
# CMake
|
||||||
|
cmake-build-debug/
|
||||||
|
cmake-build-release/
|
||||||
|
|
||||||
|
# Mongo Explorer plugin:
|
||||||
|
.idea/**/mongoSettings.xml
|
||||||
|
|
||||||
|
## File-based project format:
|
||||||
|
*.iws
|
||||||
|
|
||||||
|
## Plugin-specific files:
|
||||||
|
|
||||||
|
# IntelliJ
|
||||||
|
out/
|
||||||
|
|
||||||
|
# mpeltonen/sbt-idea plugin
|
||||||
|
.idea_modules/
|
||||||
|
|
||||||
|
# JIRA plugin
|
||||||
|
atlassian-ide-plugin.xml
|
||||||
|
|
||||||
|
# Cursive Clojure plugin
|
||||||
|
.idea/replstate.xml
|
||||||
|
|
||||||
|
# Crashlytics plugin (for Android Studio and IntelliJ)
|
||||||
|
com_crashlytics_export_strings.xml
|
||||||
|
crashlytics.properties
|
||||||
|
crashlytics-build.properties
|
||||||
|
fabric.properties
|
2
.gitattributes
vendored
Executable file
2
.gitattributes
vendored
Executable file
@ -0,0 +1,2 @@
|
|||||||
|
# this drop notebooks from GitHub language stats
|
||||||
|
*.ipynb linguist-vendored
|
55
.github/ISSUE_TEMPLATE/bug-report.md
vendored
Executable file
55
.github/ISSUE_TEMPLATE/bug-report.md
vendored
Executable file
@ -0,0 +1,55 @@
|
|||||||
|
---
|
||||||
|
name: "🐛 Bug report"
|
||||||
|
about: Create a report to help us improve
|
||||||
|
title: ''
|
||||||
|
labels: bug
|
||||||
|
assignees: ''
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
Before submitting a bug report, please be aware that your issue **must be reproducible** with all of the following, otherwise it is non-actionable, and we can not help you:
|
||||||
|
- **Current repo**: run `git fetch && git status -uno` to check and `git pull` to update repo
|
||||||
|
- **Common dataset**: coco.yaml or coco128.yaml
|
||||||
|
- **Common environment**: Colab, Google Cloud, or Docker image. See https://github.com/ultralytics/yolov5#environments
|
||||||
|
|
||||||
|
If this is a custom dataset/training question you **must include** your `train*.jpg`, `test*.jpg` and `results.png` figures, or we can not help you. You can generate these with `utils.plot_results()`.
|
||||||
|
|
||||||
|
|
||||||
|
## 🐛 Bug
|
||||||
|
A clear and concise description of what the bug is.
|
||||||
|
|
||||||
|
|
||||||
|
## To Reproduce (REQUIRED)
|
||||||
|
|
||||||
|
Input:
|
||||||
|
```
|
||||||
|
import torch
|
||||||
|
|
||||||
|
a = torch.tensor([5])
|
||||||
|
c = a / 0
|
||||||
|
```
|
||||||
|
|
||||||
|
Output:
|
||||||
|
```
|
||||||
|
Traceback (most recent call last):
|
||||||
|
File "/Users/glennjocher/opt/anaconda3/envs/env1/lib/python3.7/site-packages/IPython/core/interactiveshell.py", line 3331, in run_code
|
||||||
|
exec(code_obj, self.user_global_ns, self.user_ns)
|
||||||
|
File "<ipython-input-5-be04c762b799>", line 5, in <module>
|
||||||
|
c = a / 0
|
||||||
|
RuntimeError: ZeroDivisionError
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
## Expected behavior
|
||||||
|
A clear and concise description of what you expected to happen.
|
||||||
|
|
||||||
|
|
||||||
|
## Environment
|
||||||
|
If applicable, add screenshots to help explain your problem.
|
||||||
|
|
||||||
|
- OS: [e.g. Ubuntu]
|
||||||
|
- GPU [e.g. 2080 Ti]
|
||||||
|
|
||||||
|
|
||||||
|
## Additional context
|
||||||
|
Add any other context about the problem here.
|
27
.github/ISSUE_TEMPLATE/feature-request.md
vendored
Executable file
27
.github/ISSUE_TEMPLATE/feature-request.md
vendored
Executable file
@ -0,0 +1,27 @@
|
|||||||
|
---
|
||||||
|
name: "🚀 Feature request"
|
||||||
|
about: Suggest an idea for this project
|
||||||
|
title: ''
|
||||||
|
labels: enhancement
|
||||||
|
assignees: ''
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
## 🚀 Feature
|
||||||
|
<!-- A clear and concise description of the feature proposal -->
|
||||||
|
|
||||||
|
## Motivation
|
||||||
|
|
||||||
|
<!-- Please outline the motivation for the proposal. Is your feature request related to a problem? e.g., I'm always frustrated when [...]. If this is related to another GitHub issue, please link here too -->
|
||||||
|
|
||||||
|
## Pitch
|
||||||
|
|
||||||
|
<!-- A clear and concise description of what you want to happen. -->
|
||||||
|
|
||||||
|
## Alternatives
|
||||||
|
|
||||||
|
<!-- A clear and concise description of any alternative solutions or features you've considered, if any. -->
|
||||||
|
|
||||||
|
## Additional context
|
||||||
|
|
||||||
|
<!-- Add any other context or screenshots about the feature request here. -->
|
13
.github/ISSUE_TEMPLATE/question.md
vendored
Executable file
13
.github/ISSUE_TEMPLATE/question.md
vendored
Executable file
@ -0,0 +1,13 @@
|
|||||||
|
---
|
||||||
|
name: "❓Question"
|
||||||
|
about: Ask a general question
|
||||||
|
title: ''
|
||||||
|
labels: question
|
||||||
|
assignees: ''
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
## ❔Question
|
||||||
|
|
||||||
|
|
||||||
|
## Additional context
|
12
.github/dependabot.yml
vendored
Executable file
12
.github/dependabot.yml
vendored
Executable file
@ -0,0 +1,12 @@
|
|||||||
|
version: 2
|
||||||
|
updates:
|
||||||
|
- package-ecosystem: pip
|
||||||
|
directory: "/"
|
||||||
|
schedule:
|
||||||
|
interval: weekly
|
||||||
|
time: "04:00"
|
||||||
|
open-pull-requests-limit: 10
|
||||||
|
reviewers:
|
||||||
|
- glenn-jocher
|
||||||
|
labels:
|
||||||
|
- dependencies
|
80
.github/workflows/ci-testing.yml
vendored
Executable file
80
.github/workflows/ci-testing.yml
vendored
Executable file
@ -0,0 +1,80 @@
|
|||||||
|
name: CI CPU testing
|
||||||
|
|
||||||
|
on: # https://help.github.com/en/actions/reference/events-that-trigger-workflows
|
||||||
|
push:
|
||||||
|
branches: [ master ]
|
||||||
|
pull_request:
|
||||||
|
# The branches below must be a subset of the branches above
|
||||||
|
branches: [ master ]
|
||||||
|
schedule:
|
||||||
|
- cron: '0 0 * * *' # Runs at 00:00 UTC every day
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
cpu-tests:
|
||||||
|
|
||||||
|
runs-on: ${{ matrix.os }}
|
||||||
|
strategy:
|
||||||
|
fail-fast: false
|
||||||
|
matrix:
|
||||||
|
os: [ubuntu-latest, macos-latest, windows-latest]
|
||||||
|
python-version: [3.8]
|
||||||
|
model: ['yolov5s'] # models to test
|
||||||
|
|
||||||
|
# Timeout: https://stackoverflow.com/a/59076067/4521646
|
||||||
|
timeout-minutes: 50
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v2
|
||||||
|
- name: Set up Python ${{ matrix.python-version }}
|
||||||
|
uses: actions/setup-python@v2
|
||||||
|
with:
|
||||||
|
python-version: ${{ matrix.python-version }}
|
||||||
|
|
||||||
|
# Note: This uses an internal pip API and may not always work
|
||||||
|
# https://github.com/actions/cache/blob/master/examples.md#multiple-oss-in-a-workflow
|
||||||
|
- name: Get pip cache
|
||||||
|
id: pip-cache
|
||||||
|
run: |
|
||||||
|
python -c "from pip._internal.locations import USER_CACHE_DIR; print('::set-output name=dir::' + USER_CACHE_DIR)"
|
||||||
|
|
||||||
|
- name: Cache pip
|
||||||
|
uses: actions/cache@v1
|
||||||
|
with:
|
||||||
|
path: ${{ steps.pip-cache.outputs.dir }}
|
||||||
|
key: ${{ runner.os }}-${{ matrix.python-version }}-pip-${{ hashFiles('requirements.txt') }}
|
||||||
|
restore-keys: |
|
||||||
|
${{ runner.os }}-${{ matrix.python-version }}-pip-
|
||||||
|
|
||||||
|
- name: Install dependencies
|
||||||
|
run: |
|
||||||
|
python -m pip install --upgrade pip
|
||||||
|
pip install -qr requirements.txt -f https://download.pytorch.org/whl/cpu/torch_stable.html
|
||||||
|
pip install -q onnx
|
||||||
|
python --version
|
||||||
|
pip --version
|
||||||
|
pip list
|
||||||
|
shell: bash
|
||||||
|
|
||||||
|
- name: Download data
|
||||||
|
run: |
|
||||||
|
# curl -L -o tmp.zip https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128.zip
|
||||||
|
# unzip -q tmp.zip -d ../
|
||||||
|
# rm tmp.zip
|
||||||
|
|
||||||
|
- name: Tests workflow
|
||||||
|
run: |
|
||||||
|
# export PYTHONPATH="$PWD" # to run '$ python *.py' files in subdirectories
|
||||||
|
di=cpu # inference devices # define device
|
||||||
|
|
||||||
|
# train
|
||||||
|
python train.py --img 128 --batch 16 --weights weights/${{ matrix.model }}.pt --cfg models/${{ matrix.model }}.yaml --epochs 1 --device $di
|
||||||
|
# detect
|
||||||
|
python detect.py --weights weights/${{ matrix.model }}.pt --device $di
|
||||||
|
python detect.py --weights runs/train/exp/weights/last.pt --device $di
|
||||||
|
# test
|
||||||
|
python test.py --img 128 --batch 16 --weights weights/${{ matrix.model }}.pt --device $di
|
||||||
|
python test.py --img 128 --batch 16 --weights runs/train/exp/weights/last.pt --device $di
|
||||||
|
|
||||||
|
python hubconf.py # hub
|
||||||
|
python models/yolo.py --cfg models/${{ matrix.model }}.yaml # inspect
|
||||||
|
python models/export.py --img 128 --batch 1 --weights weights/${{ matrix.model }}.pt # export
|
||||||
|
shell: bash
|
54
.github/workflows/codeql-analysis.yml
vendored
Executable file
54
.github/workflows/codeql-analysis.yml
vendored
Executable file
@ -0,0 +1,54 @@
|
|||||||
|
# This action runs GitHub's industry-leading static analysis engine, CodeQL, against a repository's source code to find security vulnerabilities.
|
||||||
|
# https://github.com/github/codeql-action
|
||||||
|
|
||||||
|
name: "CodeQL"
|
||||||
|
|
||||||
|
on:
|
||||||
|
schedule:
|
||||||
|
- cron: '0 0 1 * *' # Runs at 00:00 UTC on the 1st of every month
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
analyze:
|
||||||
|
name: Analyze
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
|
||||||
|
strategy:
|
||||||
|
fail-fast: false
|
||||||
|
matrix:
|
||||||
|
language: [ 'python' ]
|
||||||
|
# CodeQL supports [ 'cpp', 'csharp', 'go', 'java', 'javascript', 'python' ]
|
||||||
|
# Learn more:
|
||||||
|
# https://docs.github.com/en/free-pro-team@latest/github/finding-security-vulnerabilities-and-errors-in-your-code/configuring-code-scanning#changing-the-languages-that-are-analyzed
|
||||||
|
|
||||||
|
steps:
|
||||||
|
- name: Checkout repository
|
||||||
|
uses: actions/checkout@v2
|
||||||
|
|
||||||
|
# Initializes the CodeQL tools for scanning.
|
||||||
|
- name: Initialize CodeQL
|
||||||
|
uses: github/codeql-action/init@v1
|
||||||
|
with:
|
||||||
|
languages: ${{ matrix.language }}
|
||||||
|
# If you wish to specify custom queries, you can do so here or in a config file.
|
||||||
|
# By default, queries listed here will override any specified in a config file.
|
||||||
|
# Prefix the list here with "+" to use these queries and those in the config file.
|
||||||
|
# queries: ./path/to/local/query, your-org/your-repo/queries@main
|
||||||
|
|
||||||
|
# Autobuild attempts to build any compiled languages (C/C++, C#, or Java).
|
||||||
|
# If this step fails, then you should remove it and run the build manually (see below)
|
||||||
|
- name: Autobuild
|
||||||
|
uses: github/codeql-action/autobuild@v1
|
||||||
|
|
||||||
|
# ℹ️ Command-line programs to run using the OS shell.
|
||||||
|
# 📚 https://git.io/JvXDl
|
||||||
|
|
||||||
|
# ✏️ If the Autobuild fails above, remove it and uncomment the following three lines
|
||||||
|
# and modify them (or add more) to build your code if your project
|
||||||
|
# uses a compiled language
|
||||||
|
|
||||||
|
#- run: |
|
||||||
|
# make bootstrap
|
||||||
|
# make release
|
||||||
|
|
||||||
|
- name: Perform CodeQL Analysis
|
||||||
|
uses: github/codeql-action/analyze@v1
|
56
.github/workflows/greetings.yml
vendored
Executable file
56
.github/workflows/greetings.yml
vendored
Executable file
@ -0,0 +1,56 @@
|
|||||||
|
name: Greetings
|
||||||
|
|
||||||
|
on: [pull_request_target, issues]
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
greeting:
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
steps:
|
||||||
|
- uses: actions/first-interaction@v1
|
||||||
|
with:
|
||||||
|
repo-token: ${{ secrets.GITHUB_TOKEN }}
|
||||||
|
pr-message: |
|
||||||
|
👋 Hello @${{ github.actor }}, thank you for submitting a 🚀 PR! To allow your work to be integrated as seamlessly as possible, we advise you to:
|
||||||
|
- ✅ Verify your PR is **up-to-date with origin/master.** If your PR is behind origin/master an automatic [GitHub actions](https://github.com/ultralytics/yolov5/blob/master/.github/workflows/rebase.yml) rebase may be attempted by including the /rebase command in a comment body, or by running the following code, replacing 'feature' with the name of your local branch:
|
||||||
|
```bash
|
||||||
|
git remote add upstream https://github.com/ultralytics/yolov5.git
|
||||||
|
git fetch upstream
|
||||||
|
git checkout feature # <----- replace 'feature' with local branch name
|
||||||
|
git rebase upstream/master
|
||||||
|
git push -u origin -f
|
||||||
|
```
|
||||||
|
- ✅ Verify all Continuous Integration (CI) **checks are passing**.
|
||||||
|
- ✅ Reduce changes to the absolute **minimum** required for your bug fix or feature addition. _"It is not daily increase but daily decrease, hack away the unessential. The closer to the source, the less wastage there is."_ -Bruce Lee
|
||||||
|
|
||||||
|
issue-message: |
|
||||||
|
👋 Hello @${{ github.actor }}, thank you for your interest in 🚀 YOLOv5! Please visit our ⭐️ [Tutorials](https://github.com/ultralytics/yolov5/wiki#tutorials) to get started, where you can find quickstart guides for simple tasks like [Custom Data Training](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) all the way to advanced concepts like [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607).
|
||||||
|
|
||||||
|
If this is a 🐛 Bug Report, please provide screenshots and **minimum viable code to reproduce your issue**, otherwise we can not help you.
|
||||||
|
|
||||||
|
If this is a custom training ❓ Question, please provide as much information as possible, including dataset images, training logs, screenshots, and a public link to online [W&B logging](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data#visualize) if available.
|
||||||
|
|
||||||
|
For business inquiries or professional support requests please visit https://www.ultralytics.com or email Glenn Jocher at glenn.jocher@ultralytics.com.
|
||||||
|
|
||||||
|
## Requirements
|
||||||
|
|
||||||
|
Python 3.8 or later with all [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) dependencies installed, including `torch>=1.7`. To install run:
|
||||||
|
```bash
|
||||||
|
$ pip install -r requirements.txt
|
||||||
|
```
|
||||||
|
|
||||||
|
## Environments
|
||||||
|
|
||||||
|
YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):
|
||||||
|
|
||||||
|
- **Google Colab and Kaggle** notebooks with free GPU: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
|
||||||
|
- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
|
||||||
|
- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart)
|
||||||
|
- **Docker Image**. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
|
||||||
|
|
||||||
|
|
||||||
|
## Status
|
||||||
|
|
||||||
|

|
||||||
|
|
||||||
|
If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), testing ([test.py](https://github.com/ultralytics/yolov5/blob/master/test.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/models/export.py)) on MacOS, Windows, and Ubuntu every 24 hours and on every commit.
|
||||||
|
|
21
.github/workflows/rebase.yml
vendored
Executable file
21
.github/workflows/rebase.yml
vendored
Executable file
@ -0,0 +1,21 @@
|
|||||||
|
name: Automatic Rebase
|
||||||
|
# https://github.com/marketplace/actions/automatic-rebase
|
||||||
|
|
||||||
|
on:
|
||||||
|
issue_comment:
|
||||||
|
types: [created]
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
rebase:
|
||||||
|
name: Rebase
|
||||||
|
if: github.event.issue.pull_request != '' && contains(github.event.comment.body, '/rebase')
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
steps:
|
||||||
|
- name: Checkout the latest code
|
||||||
|
uses: actions/checkout@v2
|
||||||
|
with:
|
||||||
|
fetch-depth: 0
|
||||||
|
- name: Automatic Rebase
|
||||||
|
uses: cirrus-actions/rebase@1.3.1
|
||||||
|
env:
|
||||||
|
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
18
.github/workflows/stale.yml
vendored
Executable file
18
.github/workflows/stale.yml
vendored
Executable file
@ -0,0 +1,18 @@
|
|||||||
|
name: Close stale issues
|
||||||
|
on:
|
||||||
|
schedule:
|
||||||
|
- cron: "0 0 * * *"
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
stale:
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
steps:
|
||||||
|
- uses: actions/stale@v3
|
||||||
|
with:
|
||||||
|
repo-token: ${{ secrets.GITHUB_TOKEN }}
|
||||||
|
stale-issue-message: 'This issue has been automatically marked as stale because it has not had recent activity. It will be closed if no further activity occurs. Thank you for your contributions.'
|
||||||
|
stale-pr-message: 'This issue has been automatically marked as stale because it has not had recent activity. It will be closed if no further activity occurs. Thank you for your contributions.'
|
||||||
|
days-before-stale: 30
|
||||||
|
days-before-close: 5
|
||||||
|
exempt-issue-labels: 'documentation,tutorial'
|
||||||
|
operations-per-run: 100 # The maximum number of operations per run, used to control rate limiting.
|
52
Dockerfile
Executable file
52
Dockerfile
Executable file
@ -0,0 +1,52 @@
|
|||||||
|
# Start FROM Nvidia PyTorch image https://ngc.nvidia.com/catalog/containers/nvidia:pytorch
|
||||||
|
FROM nvcr.io/nvidia/pytorch:21.03-py3
|
||||||
|
|
||||||
|
# Install linux packages
|
||||||
|
RUN apt update && apt install -y zip htop screen libgl1-mesa-glx
|
||||||
|
|
||||||
|
# Install python dependencies
|
||||||
|
COPY requirements.txt .
|
||||||
|
RUN python -m pip install --upgrade pip
|
||||||
|
RUN pip uninstall -y nvidia-tensorboard nvidia-tensorboard-plugin-dlprof
|
||||||
|
RUN pip install --no-cache -r requirements.txt gsutil notebook
|
||||||
|
|
||||||
|
# Create working directory
|
||||||
|
RUN mkdir -p /usr/src/app
|
||||||
|
WORKDIR /usr/src/app
|
||||||
|
|
||||||
|
# Copy contents
|
||||||
|
COPY . /usr/src/app
|
||||||
|
|
||||||
|
# Set environment variables
|
||||||
|
ENV HOME=/usr/src/app
|
||||||
|
|
||||||
|
|
||||||
|
# --------------------------------------------------- Extras Below ---------------------------------------------------
|
||||||
|
|
||||||
|
# Build and Push
|
||||||
|
# t=ultralytics/yolov5:latest && sudo docker build -t $t . && sudo docker push $t
|
||||||
|
# for v in {300..303}; do t=ultralytics/coco:v$v && sudo docker build -t $t . && sudo docker push $t; done
|
||||||
|
|
||||||
|
# Pull and Run
|
||||||
|
# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all $t
|
||||||
|
|
||||||
|
# Pull and Run with local directory access
|
||||||
|
# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all -v "$(pwd)"/coco:/usr/src/coco $t
|
||||||
|
|
||||||
|
# Kill all
|
||||||
|
# sudo docker kill $(sudo docker ps -q)
|
||||||
|
|
||||||
|
# Kill all image-based
|
||||||
|
# sudo docker kill $(sudo docker ps -qa --filter ancestor=ultralytics/yolov5:latest)
|
||||||
|
|
||||||
|
# Bash into running container
|
||||||
|
# sudo docker exec -it 5a9b5863d93d bash
|
||||||
|
|
||||||
|
# Bash into stopped container
|
||||||
|
# id=$(sudo docker ps -qa) && sudo docker start $id && sudo docker exec -it $id bash
|
||||||
|
|
||||||
|
# Send weights to GCP
|
||||||
|
# python -c "from utils.general import *; strip_optimizer('runs/train/exp0_*/weights/best.pt', 'tmp.pt')" && gsutil cp tmp.pt gs://*.pt
|
||||||
|
|
||||||
|
# Clean up
|
||||||
|
# docker system prune -a --volumes
|
674
LICENSE
Executable file
674
LICENSE
Executable file
@ -0,0 +1,674 @@
|
|||||||
|
GNU GENERAL PUBLIC LICENSE
|
||||||
|
Version 3, 29 June 2007
|
||||||
|
|
||||||
|
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
|
||||||
|
Everyone is permitted to copy and distribute verbatim copies
|
||||||
|
of this license document, but changing it is not allowed.
|
||||||
|
|
||||||
|
Preamble
|
||||||
|
|
||||||
|
The GNU General Public License is a free, copyleft license for
|
||||||
|
software and other kinds of works.
|
||||||
|
|
||||||
|
The licenses for most software and other practical works are designed
|
||||||
|
to take away your freedom to share and change the works. By contrast,
|
||||||
|
the GNU General Public License is intended to guarantee your freedom to
|
||||||
|
share and change all versions of a program--to make sure it remains free
|
||||||
|
software for all its users. We, the Free Software Foundation, use the
|
||||||
|
GNU General Public License for most of our software; it applies also to
|
||||||
|
any other work released this way by its authors. You can apply it to
|
||||||
|
your programs, too.
|
||||||
|
|
||||||
|
When we speak of free software, we are referring to freedom, not
|
||||||
|
price. Our General Public Licenses are designed to make sure that you
|
||||||
|
have the freedom to distribute copies of free software (and charge for
|
||||||
|
them if you wish), that you receive source code or can get it if you
|
||||||
|
want it, that you can change the software or use pieces of it in new
|
||||||
|
free programs, and that you know you can do these things.
|
||||||
|
|
||||||
|
To protect your rights, we need to prevent others from denying you
|
||||||
|
these rights or asking you to surrender the rights. Therefore, you have
|
||||||
|
certain responsibilities if you distribute copies of the software, or if
|
||||||
|
you modify it: responsibilities to respect the freedom of others.
|
||||||
|
|
||||||
|
For example, if you distribute copies of such a program, whether
|
||||||
|
gratis or for a fee, you must pass on to the recipients the same
|
||||||
|
freedoms that you received. You must make sure that they, too, receive
|
||||||
|
or can get the source code. And you must show them these terms so they
|
||||||
|
know their rights.
|
||||||
|
|
||||||
|
Developers that use the GNU GPL protect your rights with two steps:
|
||||||
|
(1) assert copyright on the software, and (2) offer you this License
|
||||||
|
giving you legal permission to copy, distribute and/or modify it.
|
||||||
|
|
||||||
|
For the developers' and authors' protection, the GPL clearly explains
|
||||||
|
that there is no warranty for this free software. For both users' and
|
||||||
|
authors' sake, the GPL requires that modified versions be marked as
|
||||||
|
changed, so that their problems will not be attributed erroneously to
|
||||||
|
authors of previous versions.
|
||||||
|
|
||||||
|
Some devices are designed to deny users access to install or run
|
||||||
|
modified versions of the software inside them, although the manufacturer
|
||||||
|
can do so. This is fundamentally incompatible with the aim of
|
||||||
|
protecting users' freedom to change the software. The systematic
|
||||||
|
pattern of such abuse occurs in the area of products for individuals to
|
||||||
|
use, which is precisely where it is most unacceptable. Therefore, we
|
||||||
|
have designed this version of the GPL to prohibit the practice for those
|
||||||
|
products. If such problems arise substantially in other domains, we
|
||||||
|
stand ready to extend this provision to those domains in future versions
|
||||||
|
of the GPL, as needed to protect the freedom of users.
|
||||||
|
|
||||||
|
Finally, every program is threatened constantly by software patents.
|
||||||
|
States should not allow patents to restrict development and use of
|
||||||
|
software on general-purpose computers, but in those that do, we wish to
|
||||||
|
avoid the special danger that patents applied to a free program could
|
||||||
|
make it effectively proprietary. To prevent this, the GPL assures that
|
||||||
|
patents cannot be used to render the program non-free.
|
||||||
|
|
||||||
|
The precise terms and conditions for copying, distribution and
|
||||||
|
modification follow.
|
||||||
|
|
||||||
|
TERMS AND CONDITIONS
|
||||||
|
|
||||||
|
0. Definitions.
|
||||||
|
|
||||||
|
"This License" refers to version 3 of the GNU General Public License.
|
||||||
|
|
||||||
|
"Copyright" also means copyright-like laws that apply to other kinds of
|
||||||
|
works, such as semiconductor masks.
|
||||||
|
|
||||||
|
"The Program" refers to any copyrightable work licensed under this
|
||||||
|
License. Each licensee is addressed as "you". "Licensees" and
|
||||||
|
"recipients" may be individuals or organizations.
|
||||||
|
|
||||||
|
To "modify" a work means to copy from or adapt all or part of the work
|
||||||
|
in a fashion requiring copyright permission, other than the making of an
|
||||||
|
exact copy. The resulting work is called a "modified version" of the
|
||||||
|
earlier work or a work "based on" the earlier work.
|
||||||
|
|
||||||
|
A "covered work" means either the unmodified Program or a work based
|
||||||
|
on the Program.
|
||||||
|
|
||||||
|
To "propagate" a work means to do anything with it that, without
|
||||||
|
permission, would make you directly or secondarily liable for
|
||||||
|
infringement under applicable copyright law, except executing it on a
|
||||||
|
computer or modifying a private copy. Propagation includes copying,
|
||||||
|
distribution (with or without modification), making available to the
|
||||||
|
public, and in some countries other activities as well.
|
||||||
|
|
||||||
|
To "convey" a work means any kind of propagation that enables other
|
||||||
|
parties to make or receive copies. Mere interaction with a user through
|
||||||
|
a computer network, with no transfer of a copy, is not conveying.
|
||||||
|
|
||||||
|
An interactive user interface displays "Appropriate Legal Notices"
|
||||||
|
to the extent that it includes a convenient and prominently visible
|
||||||
|
feature that (1) displays an appropriate copyright notice, and (2)
|
||||||
|
tells the user that there is no warranty for the work (except to the
|
||||||
|
extent that warranties are provided), that licensees may convey the
|
||||||
|
work under this License, and how to view a copy of this License. If
|
||||||
|
the interface presents a list of user commands or options, such as a
|
||||||
|
menu, a prominent item in the list meets this criterion.
|
||||||
|
|
||||||
|
1. Source Code.
|
||||||
|
|
||||||
|
The "source code" for a work means the preferred form of the work
|
||||||
|
for making modifications to it. "Object code" means any non-source
|
||||||
|
form of a work.
|
||||||
|
|
||||||
|
A "Standard Interface" means an interface that either is an official
|
||||||
|
standard defined by a recognized standards body, or, in the case of
|
||||||
|
interfaces specified for a particular programming language, one that
|
||||||
|
is widely used among developers working in that language.
|
||||||
|
|
||||||
|
The "System Libraries" of an executable work include anything, other
|
||||||
|
than the work as a whole, that (a) is included in the normal form of
|
||||||
|
packaging a Major Component, but which is not part of that Major
|
||||||
|
Component, and (b) serves only to enable use of the work with that
|
||||||
|
Major Component, or to implement a Standard Interface for which an
|
||||||
|
implementation is available to the public in source code form. A
|
||||||
|
"Major Component", in this context, means a major essential component
|
||||||
|
(kernel, window system, and so on) of the specific operating system
|
||||||
|
(if any) on which the executable work runs, or a compiler used to
|
||||||
|
produce the work, or an object code interpreter used to run it.
|
||||||
|
|
||||||
|
The "Corresponding Source" for a work in object code form means all
|
||||||
|
the source code needed to generate, install, and (for an executable
|
||||||
|
work) run the object code and to modify the work, including scripts to
|
||||||
|
control those activities. However, it does not include the work's
|
||||||
|
System Libraries, or general-purpose tools or generally available free
|
||||||
|
programs which are used unmodified in performing those activities but
|
||||||
|
which are not part of the work. For example, Corresponding Source
|
||||||
|
includes interface definition files associated with source files for
|
||||||
|
the work, and the source code for shared libraries and dynamically
|
||||||
|
linked subprograms that the work is specifically designed to require,
|
||||||
|
such as by intimate data communication or control flow between those
|
||||||
|
subprograms and other parts of the work.
|
||||||
|
|
||||||
|
The Corresponding Source need not include anything that users
|
||||||
|
can regenerate automatically from other parts of the Corresponding
|
||||||
|
Source.
|
||||||
|
|
||||||
|
The Corresponding Source for a work in source code form is that
|
||||||
|
same work.
|
||||||
|
|
||||||
|
2. Basic Permissions.
|
||||||
|
|
||||||
|
All rights granted under this License are granted for the term of
|
||||||
|
copyright on the Program, and are irrevocable provided the stated
|
||||||
|
conditions are met. This License explicitly affirms your unlimited
|
||||||
|
permission to run the unmodified Program. The output from running a
|
||||||
|
covered work is covered by this License only if the output, given its
|
||||||
|
content, constitutes a covered work. This License acknowledges your
|
||||||
|
rights of fair use or other equivalent, as provided by copyright law.
|
||||||
|
|
||||||
|
You may make, run and propagate covered works that you do not
|
||||||
|
convey, without conditions so long as your license otherwise remains
|
||||||
|
in force. You may convey covered works to others for the sole purpose
|
||||||
|
of having them make modifications exclusively for you, or provide you
|
||||||
|
with facilities for running those works, provided that you comply with
|
||||||
|
the terms of this License in conveying all material for which you do
|
||||||
|
not control copyright. Those thus making or running the covered works
|
||||||
|
for you must do so exclusively on your behalf, under your direction
|
||||||
|
and control, on terms that prohibit them from making any copies of
|
||||||
|
your copyrighted material outside their relationship with you.
|
||||||
|
|
||||||
|
Conveying under any other circumstances is permitted solely under
|
||||||
|
the conditions stated below. Sublicensing is not allowed; section 10
|
||||||
|
makes it unnecessary.
|
||||||
|
|
||||||
|
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
||||||
|
|
||||||
|
No covered work shall be deemed part of an effective technological
|
||||||
|
measure under any applicable law fulfilling obligations under article
|
||||||
|
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
||||||
|
similar laws prohibiting or restricting circumvention of such
|
||||||
|
measures.
|
||||||
|
|
||||||
|
When you convey a covered work, you waive any legal power to forbid
|
||||||
|
circumvention of technological measures to the extent such circumvention
|
||||||
|
is effected by exercising rights under this License with respect to
|
||||||
|
the covered work, and you disclaim any intention to limit operation or
|
||||||
|
modification of the work as a means of enforcing, against the work's
|
||||||
|
users, your or third parties' legal rights to forbid circumvention of
|
||||||
|
technological measures.
|
||||||
|
|
||||||
|
4. Conveying Verbatim Copies.
|
||||||
|
|
||||||
|
You may convey verbatim copies of the Program's source code as you
|
||||||
|
receive it, in any medium, provided that you conspicuously and
|
||||||
|
appropriately publish on each copy an appropriate copyright notice;
|
||||||
|
keep intact all notices stating that this License and any
|
||||||
|
non-permissive terms added in accord with section 7 apply to the code;
|
||||||
|
keep intact all notices of the absence of any warranty; and give all
|
||||||
|
recipients a copy of this License along with the Program.
|
||||||
|
|
||||||
|
You may charge any price or no price for each copy that you convey,
|
||||||
|
and you may offer support or warranty protection for a fee.
|
||||||
|
|
||||||
|
5. Conveying Modified Source Versions.
|
||||||
|
|
||||||
|
You may convey a work based on the Program, or the modifications to
|
||||||
|
produce it from the Program, in the form of source code under the
|
||||||
|
terms of section 4, provided that you also meet all of these conditions:
|
||||||
|
|
||||||
|
a) The work must carry prominent notices stating that you modified
|
||||||
|
it, and giving a relevant date.
|
||||||
|
|
||||||
|
b) The work must carry prominent notices stating that it is
|
||||||
|
released under this License and any conditions added under section
|
||||||
|
7. This requirement modifies the requirement in section 4 to
|
||||||
|
"keep intact all notices".
|
||||||
|
|
||||||
|
c) You must license the entire work, as a whole, under this
|
||||||
|
License to anyone who comes into possession of a copy. This
|
||||||
|
License will therefore apply, along with any applicable section 7
|
||||||
|
additional terms, to the whole of the work, and all its parts,
|
||||||
|
regardless of how they are packaged. This License gives no
|
||||||
|
permission to license the work in any other way, but it does not
|
||||||
|
invalidate such permission if you have separately received it.
|
||||||
|
|
||||||
|
d) If the work has interactive user interfaces, each must display
|
||||||
|
Appropriate Legal Notices; however, if the Program has interactive
|
||||||
|
interfaces that do not display Appropriate Legal Notices, your
|
||||||
|
work need not make them do so.
|
||||||
|
|
||||||
|
A compilation of a covered work with other separate and independent
|
||||||
|
works, which are not by their nature extensions of the covered work,
|
||||||
|
and which are not combined with it such as to form a larger program,
|
||||||
|
in or on a volume of a storage or distribution medium, is called an
|
||||||
|
"aggregate" if the compilation and its resulting copyright are not
|
||||||
|
used to limit the access or legal rights of the compilation's users
|
||||||
|
beyond what the individual works permit. Inclusion of a covered work
|
||||||
|
in an aggregate does not cause this License to apply to the other
|
||||||
|
parts of the aggregate.
|
||||||
|
|
||||||
|
6. Conveying Non-Source Forms.
|
||||||
|
|
||||||
|
You may convey a covered work in object code form under the terms
|
||||||
|
of sections 4 and 5, provided that you also convey the
|
||||||
|
machine-readable Corresponding Source under the terms of this License,
|
||||||
|
in one of these ways:
|
||||||
|
|
||||||
|
a) Convey the object code in, or embodied in, a physical product
|
||||||
|
(including a physical distribution medium), accompanied by the
|
||||||
|
Corresponding Source fixed on a durable physical medium
|
||||||
|
customarily used for software interchange.
|
||||||
|
|
||||||
|
b) Convey the object code in, or embodied in, a physical product
|
||||||
|
(including a physical distribution medium), accompanied by a
|
||||||
|
written offer, valid for at least three years and valid for as
|
||||||
|
long as you offer spare parts or customer support for that product
|
||||||
|
model, to give anyone who possesses the object code either (1) a
|
||||||
|
copy of the Corresponding Source for all the software in the
|
||||||
|
product that is covered by this License, on a durable physical
|
||||||
|
medium customarily used for software interchange, for a price no
|
||||||
|
more than your reasonable cost of physically performing this
|
||||||
|
conveying of source, or (2) access to copy the
|
||||||
|
Corresponding Source from a network server at no charge.
|
||||||
|
|
||||||
|
c) Convey individual copies of the object code with a copy of the
|
||||||
|
written offer to provide the Corresponding Source. This
|
||||||
|
alternative is allowed only occasionally and noncommercially, and
|
||||||
|
only if you received the object code with such an offer, in accord
|
||||||
|
with subsection 6b.
|
||||||
|
|
||||||
|
d) Convey the object code by offering access from a designated
|
||||||
|
place (gratis or for a charge), and offer equivalent access to the
|
||||||
|
Corresponding Source in the same way through the same place at no
|
||||||
|
further charge. You need not require recipients to copy the
|
||||||
|
Corresponding Source along with the object code. If the place to
|
||||||
|
copy the object code is a network server, the Corresponding Source
|
||||||
|
may be on a different server (operated by you or a third party)
|
||||||
|
that supports equivalent copying facilities, provided you maintain
|
||||||
|
clear directions next to the object code saying where to find the
|
||||||
|
Corresponding Source. Regardless of what server hosts the
|
||||||
|
Corresponding Source, you remain obligated to ensure that it is
|
||||||
|
available for as long as needed to satisfy these requirements.
|
||||||
|
|
||||||
|
e) Convey the object code using peer-to-peer transmission, provided
|
||||||
|
you inform other peers where the object code and Corresponding
|
||||||
|
Source of the work are being offered to the general public at no
|
||||||
|
charge under subsection 6d.
|
||||||
|
|
||||||
|
A separable portion of the object code, whose source code is excluded
|
||||||
|
from the Corresponding Source as a System Library, need not be
|
||||||
|
included in conveying the object code work.
|
||||||
|
|
||||||
|
A "User Product" is either (1) a "consumer product", which means any
|
||||||
|
tangible personal property which is normally used for personal, family,
|
||||||
|
or household purposes, or (2) anything designed or sold for incorporation
|
||||||
|
into a dwelling. In determining whether a product is a consumer product,
|
||||||
|
doubtful cases shall be resolved in favor of coverage. For a particular
|
||||||
|
product received by a particular user, "normally used" refers to a
|
||||||
|
typical or common use of that class of product, regardless of the status
|
||||||
|
of the particular user or of the way in which the particular user
|
||||||
|
actually uses, or expects or is expected to use, the product. A product
|
||||||
|
is a consumer product regardless of whether the product has substantial
|
||||||
|
commercial, industrial or non-consumer uses, unless such uses represent
|
||||||
|
the only significant mode of use of the product.
|
||||||
|
|
||||||
|
"Installation Information" for a User Product means any methods,
|
||||||
|
procedures, authorization keys, or other information required to install
|
||||||
|
and execute modified versions of a covered work in that User Product from
|
||||||
|
a modified version of its Corresponding Source. The information must
|
||||||
|
suffice to ensure that the continued functioning of the modified object
|
||||||
|
code is in no case prevented or interfered with solely because
|
||||||
|
modification has been made.
|
||||||
|
|
||||||
|
If you convey an object code work under this section in, or with, or
|
||||||
|
specifically for use in, a User Product, and the conveying occurs as
|
||||||
|
part of a transaction in which the right of possession and use of the
|
||||||
|
User Product is transferred to the recipient in perpetuity or for a
|
||||||
|
fixed term (regardless of how the transaction is characterized), the
|
||||||
|
Corresponding Source conveyed under this section must be accompanied
|
||||||
|
by the Installation Information. But this requirement does not apply
|
||||||
|
if neither you nor any third party retains the ability to install
|
||||||
|
modified object code on the User Product (for example, the work has
|
||||||
|
been installed in ROM).
|
||||||
|
|
||||||
|
The requirement to provide Installation Information does not include a
|
||||||
|
requirement to continue to provide support service, warranty, or updates
|
||||||
|
for a work that has been modified or installed by the recipient, or for
|
||||||
|
the User Product in which it has been modified or installed. Access to a
|
||||||
|
network may be denied when the modification itself materially and
|
||||||
|
adversely affects the operation of the network or violates the rules and
|
||||||
|
protocols for communication across the network.
|
||||||
|
|
||||||
|
Corresponding Source conveyed, and Installation Information provided,
|
||||||
|
in accord with this section must be in a format that is publicly
|
||||||
|
documented (and with an implementation available to the public in
|
||||||
|
source code form), and must require no special password or key for
|
||||||
|
unpacking, reading or copying.
|
||||||
|
|
||||||
|
7. Additional Terms.
|
||||||
|
|
||||||
|
"Additional permissions" are terms that supplement the terms of this
|
||||||
|
License by making exceptions from one or more of its conditions.
|
||||||
|
Additional permissions that are applicable to the entire Program shall
|
||||||
|
be treated as though they were included in this License, to the extent
|
||||||
|
that they are valid under applicable law. If additional permissions
|
||||||
|
apply only to part of the Program, that part may be used separately
|
||||||
|
under those permissions, but the entire Program remains governed by
|
||||||
|
this License without regard to the additional permissions.
|
||||||
|
|
||||||
|
When you convey a copy of a covered work, you may at your option
|
||||||
|
remove any additional permissions from that copy, or from any part of
|
||||||
|
it. (Additional permissions may be written to require their own
|
||||||
|
removal in certain cases when you modify the work.) You may place
|
||||||
|
additional permissions on material, added by you to a covered work,
|
||||||
|
for which you have or can give appropriate copyright permission.
|
||||||
|
|
||||||
|
Notwithstanding any other provision of this License, for material you
|
||||||
|
add to a covered work, you may (if authorized by the copyright holders of
|
||||||
|
that material) supplement the terms of this License with terms:
|
||||||
|
|
||||||
|
a) Disclaiming warranty or limiting liability differently from the
|
||||||
|
terms of sections 15 and 16 of this License; or
|
||||||
|
|
||||||
|
b) Requiring preservation of specified reasonable legal notices or
|
||||||
|
author attributions in that material or in the Appropriate Legal
|
||||||
|
Notices displayed by works containing it; or
|
||||||
|
|
||||||
|
c) Prohibiting misrepresentation of the origin of that material, or
|
||||||
|
requiring that modified versions of such material be marked in
|
||||||
|
reasonable ways as different from the original version; or
|
||||||
|
|
||||||
|
d) Limiting the use for publicity purposes of names of licensors or
|
||||||
|
authors of the material; or
|
||||||
|
|
||||||
|
e) Declining to grant rights under trademark law for use of some
|
||||||
|
trade names, trademarks, or service marks; or
|
||||||
|
|
||||||
|
f) Requiring indemnification of licensors and authors of that
|
||||||
|
material by anyone who conveys the material (or modified versions of
|
||||||
|
it) with contractual assumptions of liability to the recipient, for
|
||||||
|
any liability that these contractual assumptions directly impose on
|
||||||
|
those licensors and authors.
|
||||||
|
|
||||||
|
All other non-permissive additional terms are considered "further
|
||||||
|
restrictions" within the meaning of section 10. If the Program as you
|
||||||
|
received it, or any part of it, contains a notice stating that it is
|
||||||
|
governed by this License along with a term that is a further
|
||||||
|
restriction, you may remove that term. If a license document contains
|
||||||
|
a further restriction but permits relicensing or conveying under this
|
||||||
|
License, you may add to a covered work material governed by the terms
|
||||||
|
of that license document, provided that the further restriction does
|
||||||
|
not survive such relicensing or conveying.
|
||||||
|
|
||||||
|
If you add terms to a covered work in accord with this section, you
|
||||||
|
must place, in the relevant source files, a statement of the
|
||||||
|
additional terms that apply to those files, or a notice indicating
|
||||||
|
where to find the applicable terms.
|
||||||
|
|
||||||
|
Additional terms, permissive or non-permissive, may be stated in the
|
||||||
|
form of a separately written license, or stated as exceptions;
|
||||||
|
the above requirements apply either way.
|
||||||
|
|
||||||
|
8. Termination.
|
||||||
|
|
||||||
|
You may not propagate or modify a covered work except as expressly
|
||||||
|
provided under this License. Any attempt otherwise to propagate or
|
||||||
|
modify it is void, and will automatically terminate your rights under
|
||||||
|
this License (including any patent licenses granted under the third
|
||||||
|
paragraph of section 11).
|
||||||
|
|
||||||
|
However, if you cease all violation of this License, then your
|
||||||
|
license from a particular copyright holder is reinstated (a)
|
||||||
|
provisionally, unless and until the copyright holder explicitly and
|
||||||
|
finally terminates your license, and (b) permanently, if the copyright
|
||||||
|
holder fails to notify you of the violation by some reasonable means
|
||||||
|
prior to 60 days after the cessation.
|
||||||
|
|
||||||
|
Moreover, your license from a particular copyright holder is
|
||||||
|
reinstated permanently if the copyright holder notifies you of the
|
||||||
|
violation by some reasonable means, this is the first time you have
|
||||||
|
received notice of violation of this License (for any work) from that
|
||||||
|
copyright holder, and you cure the violation prior to 30 days after
|
||||||
|
your receipt of the notice.
|
||||||
|
|
||||||
|
Termination of your rights under this section does not terminate the
|
||||||
|
licenses of parties who have received copies or rights from you under
|
||||||
|
this License. If your rights have been terminated and not permanently
|
||||||
|
reinstated, you do not qualify to receive new licenses for the same
|
||||||
|
material under section 10.
|
||||||
|
|
||||||
|
9. Acceptance Not Required for Having Copies.
|
||||||
|
|
||||||
|
You are not required to accept this License in order to receive or
|
||||||
|
run a copy of the Program. Ancillary propagation of a covered work
|
||||||
|
occurring solely as a consequence of using peer-to-peer transmission
|
||||||
|
to receive a copy likewise does not require acceptance. However,
|
||||||
|
nothing other than this License grants you permission to propagate or
|
||||||
|
modify any covered work. These actions infringe copyright if you do
|
||||||
|
not accept this License. Therefore, by modifying or propagating a
|
||||||
|
covered work, you indicate your acceptance of this License to do so.
|
||||||
|
|
||||||
|
10. Automatic Licensing of Downstream Recipients.
|
||||||
|
|
||||||
|
Each time you convey a covered work, the recipient automatically
|
||||||
|
receives a license from the original licensors, to run, modify and
|
||||||
|
propagate that work, subject to this License. You are not responsible
|
||||||
|
for enforcing compliance by third parties with this License.
|
||||||
|
|
||||||
|
An "entity transaction" is a transaction transferring control of an
|
||||||
|
organization, or substantially all assets of one, or subdividing an
|
||||||
|
organization, or merging organizations. If propagation of a covered
|
||||||
|
work results from an entity transaction, each party to that
|
||||||
|
transaction who receives a copy of the work also receives whatever
|
||||||
|
licenses to the work the party's predecessor in interest had or could
|
||||||
|
give under the previous paragraph, plus a right to possession of the
|
||||||
|
Corresponding Source of the work from the predecessor in interest, if
|
||||||
|
the predecessor has it or can get it with reasonable efforts.
|
||||||
|
|
||||||
|
You may not impose any further restrictions on the exercise of the
|
||||||
|
rights granted or affirmed under this License. For example, you may
|
||||||
|
not impose a license fee, royalty, or other charge for exercise of
|
||||||
|
rights granted under this License, and you may not initiate litigation
|
||||||
|
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
||||||
|
any patent claim is infringed by making, using, selling, offering for
|
||||||
|
sale, or importing the Program or any portion of it.
|
||||||
|
|
||||||
|
11. Patents.
|
||||||
|
|
||||||
|
A "contributor" is a copyright holder who authorizes use under this
|
||||||
|
License of the Program or a work on which the Program is based. The
|
||||||
|
work thus licensed is called the contributor's "contributor version".
|
||||||
|
|
||||||
|
A contributor's "essential patent claims" are all patent claims
|
||||||
|
owned or controlled by the contributor, whether already acquired or
|
||||||
|
hereafter acquired, that would be infringed by some manner, permitted
|
||||||
|
by this License, of making, using, or selling its contributor version,
|
||||||
|
but do not include claims that would be infringed only as a
|
||||||
|
consequence of further modification of the contributor version. For
|
||||||
|
purposes of this definition, "control" includes the right to grant
|
||||||
|
patent sublicenses in a manner consistent with the requirements of
|
||||||
|
this License.
|
||||||
|
|
||||||
|
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
||||||
|
patent license under the contributor's essential patent claims, to
|
||||||
|
make, use, sell, offer for sale, import and otherwise run, modify and
|
||||||
|
propagate the contents of its contributor version.
|
||||||
|
|
||||||
|
In the following three paragraphs, a "patent license" is any express
|
||||||
|
agreement or commitment, however denominated, not to enforce a patent
|
||||||
|
(such as an express permission to practice a patent or covenant not to
|
||||||
|
sue for patent infringement). To "grant" such a patent license to a
|
||||||
|
party means to make such an agreement or commitment not to enforce a
|
||||||
|
patent against the party.
|
||||||
|
|
||||||
|
If you convey a covered work, knowingly relying on a patent license,
|
||||||
|
and the Corresponding Source of the work is not available for anyone
|
||||||
|
to copy, free of charge and under the terms of this License, through a
|
||||||
|
publicly available network server or other readily accessible means,
|
||||||
|
then you must either (1) cause the Corresponding Source to be so
|
||||||
|
available, or (2) arrange to deprive yourself of the benefit of the
|
||||||
|
patent license for this particular work, or (3) arrange, in a manner
|
||||||
|
consistent with the requirements of this License, to extend the patent
|
||||||
|
license to downstream recipients. "Knowingly relying" means you have
|
||||||
|
actual knowledge that, but for the patent license, your conveying the
|
||||||
|
covered work in a country, or your recipient's use of the covered work
|
||||||
|
in a country, would infringe one or more identifiable patents in that
|
||||||
|
country that you have reason to believe are valid.
|
||||||
|
|
||||||
|
If, pursuant to or in connection with a single transaction or
|
||||||
|
arrangement, you convey, or propagate by procuring conveyance of, a
|
||||||
|
covered work, and grant a patent license to some of the parties
|
||||||
|
receiving the covered work authorizing them to use, propagate, modify
|
||||||
|
or convey a specific copy of the covered work, then the patent license
|
||||||
|
you grant is automatically extended to all recipients of the covered
|
||||||
|
work and works based on it.
|
||||||
|
|
||||||
|
A patent license is "discriminatory" if it does not include within
|
||||||
|
the scope of its coverage, prohibits the exercise of, or is
|
||||||
|
conditioned on the non-exercise of one or more of the rights that are
|
||||||
|
specifically granted under this License. You may not convey a covered
|
||||||
|
work if you are a party to an arrangement with a third party that is
|
||||||
|
in the business of distributing software, under which you make payment
|
||||||
|
to the third party based on the extent of your activity of conveying
|
||||||
|
the work, and under which the third party grants, to any of the
|
||||||
|
parties who would receive the covered work from you, a discriminatory
|
||||||
|
patent license (a) in connection with copies of the covered work
|
||||||
|
conveyed by you (or copies made from those copies), or (b) primarily
|
||||||
|
for and in connection with specific products or compilations that
|
||||||
|
contain the covered work, unless you entered into that arrangement,
|
||||||
|
or that patent license was granted, prior to 28 March 2007.
|
||||||
|
|
||||||
|
Nothing in this License shall be construed as excluding or limiting
|
||||||
|
any implied license or other defenses to infringement that may
|
||||||
|
otherwise be available to you under applicable patent law.
|
||||||
|
|
||||||
|
12. No Surrender of Others' Freedom.
|
||||||
|
|
||||||
|
If conditions are imposed on you (whether by court order, agreement or
|
||||||
|
otherwise) that contradict the conditions of this License, they do not
|
||||||
|
excuse you from the conditions of this License. If you cannot convey a
|
||||||
|
covered work so as to satisfy simultaneously your obligations under this
|
||||||
|
License and any other pertinent obligations, then as a consequence you may
|
||||||
|
not convey it at all. For example, if you agree to terms that obligate you
|
||||||
|
to collect a royalty for further conveying from those to whom you convey
|
||||||
|
the Program, the only way you could satisfy both those terms and this
|
||||||
|
License would be to refrain entirely from conveying the Program.
|
||||||
|
|
||||||
|
13. Use with the GNU Affero General Public License.
|
||||||
|
|
||||||
|
Notwithstanding any other provision of this License, you have
|
||||||
|
permission to link or combine any covered work with a work licensed
|
||||||
|
under version 3 of the GNU Affero General Public License into a single
|
||||||
|
combined work, and to convey the resulting work. The terms of this
|
||||||
|
License will continue to apply to the part which is the covered work,
|
||||||
|
but the special requirements of the GNU Affero General Public License,
|
||||||
|
section 13, concerning interaction through a network will apply to the
|
||||||
|
combination as such.
|
||||||
|
|
||||||
|
14. Revised Versions of this License.
|
||||||
|
|
||||||
|
The Free Software Foundation may publish revised and/or new versions of
|
||||||
|
the GNU General Public License from time to time. Such new versions will
|
||||||
|
be similar in spirit to the present version, but may differ in detail to
|
||||||
|
address new problems or concerns.
|
||||||
|
|
||||||
|
Each version is given a distinguishing version number. If the
|
||||||
|
Program specifies that a certain numbered version of the GNU General
|
||||||
|
Public License "or any later version" applies to it, you have the
|
||||||
|
option of following the terms and conditions either of that numbered
|
||||||
|
version or of any later version published by the Free Software
|
||||||
|
Foundation. If the Program does not specify a version number of the
|
||||||
|
GNU General Public License, you may choose any version ever published
|
||||||
|
by the Free Software Foundation.
|
||||||
|
|
||||||
|
If the Program specifies that a proxy can decide which future
|
||||||
|
versions of the GNU General Public License can be used, that proxy's
|
||||||
|
public statement of acceptance of a version permanently authorizes you
|
||||||
|
to choose that version for the Program.
|
||||||
|
|
||||||
|
Later license versions may give you additional or different
|
||||||
|
permissions. However, no additional obligations are imposed on any
|
||||||
|
author or copyright holder as a result of your choosing to follow a
|
||||||
|
later version.
|
||||||
|
|
||||||
|
15. Disclaimer of Warranty.
|
||||||
|
|
||||||
|
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
||||||
|
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
||||||
|
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
||||||
|
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
||||||
|
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||||
|
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
||||||
|
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
||||||
|
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
||||||
|
|
||||||
|
16. Limitation of Liability.
|
||||||
|
|
||||||
|
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
||||||
|
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
||||||
|
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
||||||
|
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
||||||
|
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
||||||
|
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
||||||
|
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
||||||
|
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
||||||
|
SUCH DAMAGES.
|
||||||
|
|
||||||
|
17. Interpretation of Sections 15 and 16.
|
||||||
|
|
||||||
|
If the disclaimer of warranty and limitation of liability provided
|
||||||
|
above cannot be given local legal effect according to their terms,
|
||||||
|
reviewing courts shall apply local law that most closely approximates
|
||||||
|
an absolute waiver of all civil liability in connection with the
|
||||||
|
Program, unless a warranty or assumption of liability accompanies a
|
||||||
|
copy of the Program in return for a fee.
|
||||||
|
|
||||||
|
END OF TERMS AND CONDITIONS
|
||||||
|
|
||||||
|
How to Apply These Terms to Your New Programs
|
||||||
|
|
||||||
|
If you develop a new program, and you want it to be of the greatest
|
||||||
|
possible use to the public, the best way to achieve this is to make it
|
||||||
|
free software which everyone can redistribute and change under these terms.
|
||||||
|
|
||||||
|
To do so, attach the following notices to the program. It is safest
|
||||||
|
to attach them to the start of each source file to most effectively
|
||||||
|
state the exclusion of warranty; and each file should have at least
|
||||||
|
the "copyright" line and a pointer to where the full notice is found.
|
||||||
|
|
||||||
|
<one line to give the program's name and a brief idea of what it does.>
|
||||||
|
Copyright (C) <year> <name of author>
|
||||||
|
|
||||||
|
This program is free software: you can redistribute it and/or modify
|
||||||
|
it under the terms of the GNU General Public License as published by
|
||||||
|
the Free Software Foundation, either version 3 of the License, or
|
||||||
|
(at your option) any later version.
|
||||||
|
|
||||||
|
This program is distributed in the hope that it will be useful,
|
||||||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
GNU General Public License for more details.
|
||||||
|
|
||||||
|
You should have received a copy of the GNU General Public License
|
||||||
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||||
|
|
||||||
|
Also add information on how to contact you by electronic and paper mail.
|
||||||
|
|
||||||
|
If the program does terminal interaction, make it output a short
|
||||||
|
notice like this when it starts in an interactive mode:
|
||||||
|
|
||||||
|
<program> Copyright (C) <year> <name of author>
|
||||||
|
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
|
||||||
|
This is free software, and you are welcome to redistribute it
|
||||||
|
under certain conditions; type `show c' for details.
|
||||||
|
|
||||||
|
The hypothetical commands `show w' and `show c' should show the appropriate
|
||||||
|
parts of the General Public License. Of course, your program's commands
|
||||||
|
might be different; for a GUI interface, you would use an "about box".
|
||||||
|
|
||||||
|
You should also get your employer (if you work as a programmer) or school,
|
||||||
|
if any, to sign a "copyright disclaimer" for the program, if necessary.
|
||||||
|
For more information on this, and how to apply and follow the GNU GPL, see
|
||||||
|
<http://www.gnu.org/licenses/>.
|
||||||
|
|
||||||
|
The GNU General Public License does not permit incorporating your program
|
||||||
|
into proprietary programs. If your program is a subroutine library, you
|
||||||
|
may consider it more useful to permit linking proprietary applications with
|
||||||
|
the library. If this is what you want to do, use the GNU Lesser General
|
||||||
|
Public License instead of this License. But first, please read
|
||||||
|
<http://www.gnu.org/philosophy/why-not-lgpl.html>.
|
89
anchors.py
Normal file
89
anchors.py
Normal file
@ -0,0 +1,89 @@
|
|||||||
|
# 根据标签文件求先验框
|
||||||
|
|
||||||
|
import os
|
||||||
|
import numpy as np
|
||||||
|
import xml.etree.cElementTree as et
|
||||||
|
from kmeans import kmeans, avg_iou
|
||||||
|
|
||||||
|
FILE_ROOT = "/home/nxy/nxy_project/python_project/Data/zhanting_add/" # 根路径
|
||||||
|
ANNOTATION_ROOT = "xmls" # 数据集标签文件夹路径
|
||||||
|
ANNOTATION_PATH = FILE_ROOT + ANNOTATION_ROOT
|
||||||
|
|
||||||
|
ANCHORS_TXT_PATH = "data/anchors.txt"
|
||||||
|
|
||||||
|
CLUSTERS = 9
|
||||||
|
CLASS_NAMES = ["6925303773908", "6924743915848", "6920152471616", "6920005772716", "6902227018162",
|
||||||
|
"6920459905012", "6972194461407", "6935284412918", "6921489033706", "6904012526494",
|
||||||
|
"6923644272159", "6924882486100", "6956511907458"]
|
||||||
|
|
||||||
|
def load_data(anno_dir, class_names):
|
||||||
|
xml_names = os.listdir(anno_dir)
|
||||||
|
boxes = []
|
||||||
|
for xml_name in xml_names:
|
||||||
|
xml_pth = os.path.join(anno_dir, xml_name)
|
||||||
|
tree = et.parse(xml_pth)
|
||||||
|
|
||||||
|
width = float(tree.findtext("./size/width"))
|
||||||
|
height = float(tree.findtext("./size/height"))
|
||||||
|
|
||||||
|
try:
|
||||||
|
for obj in tree.iter("object"):
|
||||||
|
xmin = float(obj.findtext("bndbox/xmin")) / width
|
||||||
|
ymin = float(obj.findtext("bndbox/ymin")) / height
|
||||||
|
xmax = float(obj.findtext("bndbox/xmax")) / width
|
||||||
|
ymax = float(obj.findtext("bndbox/ymax")) / height
|
||||||
|
|
||||||
|
box = [xmax - xmin, ymax - ymin]
|
||||||
|
boxes.append(box)
|
||||||
|
|
||||||
|
except:
|
||||||
|
print("***",obj)
|
||||||
|
|
||||||
|
return np.array(boxes)
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
|
||||||
|
anchors_txt = open(ANCHORS_TXT_PATH, "w")
|
||||||
|
print(ANNOTATION_PATH)
|
||||||
|
|
||||||
|
train_boxes = load_data(ANNOTATION_PATH, CLASS_NAMES)
|
||||||
|
print(train_boxes)
|
||||||
|
count = 1
|
||||||
|
best_accuracy = 0
|
||||||
|
best_anchors = []
|
||||||
|
best_ratios = []
|
||||||
|
|
||||||
|
for i in range(10): ##### 可以修改,不要太大,否则时间很长
|
||||||
|
anchors_tmp = []
|
||||||
|
clusters = kmeans(train_boxes, k=CLUSTERS)
|
||||||
|
idx = clusters[:, 0].argsort()
|
||||||
|
clusters = clusters[idx]
|
||||||
|
# print(clusters)
|
||||||
|
|
||||||
|
for j in range(CLUSTERS):
|
||||||
|
anchor = [round(clusters[j][0] * 640), round(clusters[j][1] * 640)]
|
||||||
|
anchors_tmp.append(anchor)
|
||||||
|
print(f"Anchors:{anchor}")
|
||||||
|
|
||||||
|
temp_accuracy = avg_iou(train_boxes, clusters) * 100
|
||||||
|
print("Train_Accuracy:{:.2f}%".format(temp_accuracy))
|
||||||
|
|
||||||
|
ratios = np.around(clusters[:, 0] / clusters[:, 1], decimals=2).tolist()
|
||||||
|
ratios.sort()
|
||||||
|
print("Ratios:{}".format(ratios))
|
||||||
|
print(20 * "*" + " {} ".format(count) + 20 * "*")
|
||||||
|
|
||||||
|
count += 1
|
||||||
|
|
||||||
|
if temp_accuracy > best_accuracy:
|
||||||
|
best_accuracy = temp_accuracy
|
||||||
|
best_anchors = anchors_tmp
|
||||||
|
best_ratios = ratios
|
||||||
|
best_anchors = np.array(best_anchors)
|
||||||
|
best_anchors_idx = (best_anchors[:, 0]*best_anchors[:,1]).argsort()
|
||||||
|
best_anchors_sort = best_anchors[best_anchors_idx]
|
||||||
|
print("best_anchors_sort:",best_anchors_sort)
|
||||||
|
anchors_txt.write("Best Accuracy = " + str(round(best_accuracy, 2)) + '%' + "\r\n")
|
||||||
|
anchors_txt.write("Best Anchors = " + str(best_anchors_sort) + "\r\n")
|
||||||
|
anchors_txt.write("Best Ratios = " + str(best_ratios))
|
||||||
|
anchors_txt.close()
|
34
createData.py
Executable file
34
createData.py
Executable file
@ -0,0 +1,34 @@
|
|||||||
|
import os
|
||||||
|
import shutil
|
||||||
|
import random
|
||||||
|
def splitData(path):
|
||||||
|
imgtrain = os.sep.join([path, 'images', 'train'])
|
||||||
|
imgval = os.sep.join([path, 'images', 'val'])
|
||||||
|
labelstrain = os.sep.join([path, 'labels', 'train'])
|
||||||
|
labelsval = os.sep.join([path, 'labels', 'val'])
|
||||||
|
Totaldata = []
|
||||||
|
for dirname in os.listdir(path):
|
||||||
|
if dirname == 'labels':
|
||||||
|
for fileName in os.listdir(os.sep.join([path, dirname])):
|
||||||
|
Totaldata.append(fileName.split('.')[0])
|
||||||
|
#print(Totaldata)
|
||||||
|
random.shuffle(Totaldata)
|
||||||
|
val = Totaldata[:int(len(Totaldata)/10)]
|
||||||
|
train = Totaldata[int(len(Totaldata)/10):]
|
||||||
|
try:
|
||||||
|
os.mkdir(imgtrain)
|
||||||
|
os.mkdir(imgval)
|
||||||
|
os.mkdir(labelstrain)
|
||||||
|
os.mkdir(labelsval)
|
||||||
|
except:pass
|
||||||
|
for name in train:
|
||||||
|
shutil.move(os.sep.join([path, 'images', name+'.jpg']), imgtrain)
|
||||||
|
shutil.move(os.sep.join([path, 'labels', name+'.txt']), labelstrain)
|
||||||
|
for name in val:
|
||||||
|
shutil.move(os.sep.join([path, 'images', name+'.jpg']), imgval)
|
||||||
|
shutil.move(os.sep.join([path, 'labels', name+'.txt']), labelsval)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
path = '/home/data/New_project/testdata'
|
||||||
|
splitData(path)
|
190
detect.py
Executable file
190
detect.py
Executable file
@ -0,0 +1,190 @@
|
|||||||
|
import argparse
|
||||||
|
import time
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import cv2
|
||||||
|
import torch
|
||||||
|
import torch.backends.cudnn as cudnn
|
||||||
|
from numpy import random
|
||||||
|
|
||||||
|
from models.experimental import attempt_load
|
||||||
|
from utils.datasets import LoadStreams, LoadImages
|
||||||
|
from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
|
||||||
|
scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
|
||||||
|
from utils.plots import plot_one_box
|
||||||
|
from utils.torch_utils import select_device, load_classifier, time_synchronized
|
||||||
|
|
||||||
|
|
||||||
|
def detect(opt, save_img=False):
|
||||||
|
source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
|
||||||
|
save_img = not opt.nosave and not source.endswith('.txt') # save inference images
|
||||||
|
webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
|
||||||
|
('rtsp://', 'rtmp://', 'http://'))
|
||||||
|
|
||||||
|
# Directories
|
||||||
|
save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
|
||||||
|
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
|
||||||
|
|
||||||
|
# Initialize
|
||||||
|
set_logging()
|
||||||
|
device = select_device(opt.device)
|
||||||
|
half = device.type != 'cpu' # half precision only supported on CUDA
|
||||||
|
|
||||||
|
# Load model
|
||||||
|
model = attempt_load(weights, map_location=device) # load FP32 model
|
||||||
|
stride = int(model.stride.max()) # model stride
|
||||||
|
imgsz = check_img_size(imgsz, s=stride) # check img_size
|
||||||
|
if half:
|
||||||
|
model.half() # to FP16
|
||||||
|
model.eval()
|
||||||
|
# Second-stage classifier
|
||||||
|
classify = False
|
||||||
|
if classify:
|
||||||
|
modelc = load_classifier(name='resnet101', n=2) # initialize
|
||||||
|
modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()
|
||||||
|
|
||||||
|
# Set Dataloader
|
||||||
|
vid_path, vid_writer = None, None
|
||||||
|
if webcam:
|
||||||
|
view_img = check_imshow()
|
||||||
|
cudnn.benchmark = True # set True to speed up constant image size inference
|
||||||
|
dataset = LoadStreams(source, img_size=imgsz, stride=stride)
|
||||||
|
else:
|
||||||
|
dataset = LoadImages(source, img_size=imgsz, stride=stride)
|
||||||
|
|
||||||
|
# Get names and colors
|
||||||
|
names = model.module.names if hasattr(model, 'module') else model.names
|
||||||
|
colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
|
||||||
|
|
||||||
|
# Run inference
|
||||||
|
if device.type != 'cpu':
|
||||||
|
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
|
||||||
|
t0 = time.time()
|
||||||
|
for path, img, im0s, vid_cap in dataset:
|
||||||
|
img = torch.from_numpy(img).to(device)
|
||||||
|
img = img.half() if half else img.float() # uint8 to fp16/32
|
||||||
|
img /= 255.0 # 0 - 255 to 0.0 - 1.0
|
||||||
|
if img.ndimension() == 3:
|
||||||
|
img = img.unsqueeze(0)
|
||||||
|
|
||||||
|
# Inference
|
||||||
|
t1 = time_synchronized()
|
||||||
|
pred = model(img, augment=opt.augment)[0]
|
||||||
|
|
||||||
|
# Apply NMS
|
||||||
|
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
|
||||||
|
t2 = time_synchronized()
|
||||||
|
|
||||||
|
# Apply Classifier
|
||||||
|
if classify:
|
||||||
|
pred = apply_classifier(pred, modelc, img, im0s)
|
||||||
|
|
||||||
|
# Process detections
|
||||||
|
for i, det in enumerate(pred): # detections per image
|
||||||
|
if webcam: # batch_size >= 1
|
||||||
|
p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
|
||||||
|
else:
|
||||||
|
p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
|
||||||
|
|
||||||
|
p = Path(p) # to Path
|
||||||
|
save_path = str(save_dir / p.name) # img.jpg
|
||||||
|
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt
|
||||||
|
s += '%gx%g ' % img.shape[2:] # print string
|
||||||
|
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
|
||||||
|
if len(det):
|
||||||
|
# Rescale boxes from img_size to im0 size
|
||||||
|
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
|
||||||
|
|
||||||
|
# Print results
|
||||||
|
for c in det[:, -1].unique():
|
||||||
|
n = (det[:, -1] == c).sum() # detections per class
|
||||||
|
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
|
||||||
|
|
||||||
|
# Write results
|
||||||
|
for *xyxy, conf, cls in reversed(det):
|
||||||
|
if save_txt: # Write to file
|
||||||
|
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
|
||||||
|
line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label format
|
||||||
|
with open(txt_path + '.txt', 'a') as f:
|
||||||
|
f.write(('%g ' * len(line)).rstrip() % line + '\n')
|
||||||
|
|
||||||
|
if save_img or view_img: # Add bbox to image
|
||||||
|
label = f'{names[int(cls)]} {conf:.2f}'
|
||||||
|
plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3)
|
||||||
|
|
||||||
|
# Print time (inference + NMS)
|
||||||
|
print(f'{s}Done. ({t2 - t1:.3f}s)')
|
||||||
|
|
||||||
|
# Stream results
|
||||||
|
if view_img:
|
||||||
|
cv2.imshow(str(p), im0)
|
||||||
|
cv2.waitKey(1) # 1 millisecond
|
||||||
|
|
||||||
|
# Save results (image with detections)
|
||||||
|
if save_img:
|
||||||
|
if dataset.mode == 'image':
|
||||||
|
cv2.imwrite(save_path, im0)
|
||||||
|
else: # 'video' or 'stream'
|
||||||
|
if vid_path != save_path: # new video
|
||||||
|
vid_path = save_path
|
||||||
|
if isinstance(vid_writer, cv2.VideoWriter):
|
||||||
|
vid_writer.release() # release previous video writer
|
||||||
|
if vid_cap: # video
|
||||||
|
fps = vid_cap.get(cv2.CAP_PROP_FPS)
|
||||||
|
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
||||||
|
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
||||||
|
else: # stream
|
||||||
|
fps, w, h = 30, im0.shape[1], im0.shape[0]
|
||||||
|
save_path += '.mp4'
|
||||||
|
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
|
||||||
|
vid_writer.write(im0)
|
||||||
|
|
||||||
|
if save_txt or save_img:
|
||||||
|
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
|
||||||
|
print(f"Results saved to {save_dir}{s}")
|
||||||
|
|
||||||
|
print(f'Done. ({time.time() - t0:.3f}s)')
|
||||||
|
|
||||||
|
names = ["6925303773908", "6924743915848", "6920152471616", "6920005772716", "6902227018162",
|
||||||
|
"6920459905012", "6972194461407", "6935284412918", "6921489033706", "6904012526494",
|
||||||
|
"6923644272159", "6924882486100", "6956511907458"]
|
||||||
|
targets = []
|
||||||
|
for target in pred[0]:
|
||||||
|
targets.append({"Class": names[int(target[5].item())], "precision": target[4].item(), "xy1": [target[0].item(), target[1].item()],
|
||||||
|
"xy2": [target[2].item(), target[3].item()]})
|
||||||
|
resu = {"TargetDetect": targets}
|
||||||
|
print(resu)
|
||||||
|
return resu
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
#parser.add_argument('--weights', nargs='+', type=str, default='runs/zhanting/yolov5s_finetune/exp12/weights/best.pt', help='model.pt path(s)')
|
||||||
|
parser.add_argument('--weights', nargs='+', type=str, default='runs/zhanting/yolov5m_finetune/exp4/weights/best.pt', help='model.pt path(s)')
|
||||||
|
parser.add_argument('--source', type=str, default='data/pic4', help='source') # file/folder, 0 for webcam
|
||||||
|
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
|
||||||
|
parser.add_argument('--conf-thres', type=float, default=0.5, help='object confidence threshold')
|
||||||
|
parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
|
||||||
|
parser.add_argument('--device', default='0,1', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
||||||
|
parser.add_argument('--view-img', action='store_true', help='display results')
|
||||||
|
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
|
||||||
|
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
|
||||||
|
parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
|
||||||
|
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
|
||||||
|
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
|
||||||
|
parser.add_argument('--augment', action='store_true', help='augmented inference')
|
||||||
|
parser.add_argument('--update', action='store_true', help='update all models')
|
||||||
|
parser.add_argument('--project', default='runs/detect', help='save results to project/name')
|
||||||
|
parser.add_argument('--name', default='exp', help='save results to project/name')
|
||||||
|
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
|
||||||
|
opt = parser.parse_args()
|
||||||
|
print("opt:",opt)
|
||||||
|
check_requirements(exclude=('pycocotools', 'thop'))
|
||||||
|
|
||||||
|
with torch.no_grad():
|
||||||
|
if opt.update: # update all models (to fix SourceChangeWarning)
|
||||||
|
for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:
|
||||||
|
detect(opt)
|
||||||
|
strip_optimizer(opt.weights)
|
||||||
|
else:
|
||||||
|
detect(opt,True)
|
2
evolve.txt
Normal file
2
evolve.txt
Normal file
@ -0,0 +1,2 @@
|
|||||||
|
0.932 0.906 0.945 0.635 0.0142 0.0121 0.00129 0.00296 0.121 0.811 0.00036 1.92 0.527 0.0457 0.0309 0.236 0.631 0.302 0.92 0.2 2.89 0 0.0138 0.611 0.445 0.368 0.251 0.869 0.536 0 0.00856 0.516 1 0.243 2.96
|
||||||
|
0.923 0.925 0.94 0.631 0.0138 0.0124 0.00131 0.0032 0.12 0.843 0.00036 2 0.5 0.05 0.0296 0.243 0.631 0.301 0.911 0.2 2.91 0 0.0138 0.664 0.464 0.373 0.245 0.898 0.602 0 0.00856 0.5 1 0.243 3
|
104
export.py
Executable file
104
export.py
Executable file
@ -0,0 +1,104 @@
|
|||||||
|
"""Exports a YOLOv5 *.pt model to ONNX and TorchScript formats
|
||||||
|
|
||||||
|
Usage:
|
||||||
|
$ export PYTHONPATH="$PWD" && python models/export.py --weights ./weights/yolov5s.pt --img 640 --batch 1
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import sys
|
||||||
|
import time
|
||||||
|
|
||||||
|
sys.path.append('./') # to run '$ python *.py' files in subdirectories
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
|
||||||
|
import models
|
||||||
|
from models.experimental import attempt_load
|
||||||
|
from utils.activations import Hardswish, SiLU
|
||||||
|
from utils.general import set_logging, check_img_size
|
||||||
|
from utils.torch_utils import select_device
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument('--weights', type=str, default='weights/yolov5s.pt', help='weights path') # from yolov5/models/
|
||||||
|
parser.add_argument('--img-size', nargs='+', type=int, default=[416, 416], help='image size') # height, width
|
||||||
|
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
|
||||||
|
parser.add_argument('--dynamic', action='store_true', help='dynamic ONNX axes')
|
||||||
|
parser.add_argument('--grid', action='store_true', help='export Detect() layer grid')
|
||||||
|
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
||||||
|
opt = parser.parse_args()
|
||||||
|
opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
|
||||||
|
print(opt)
|
||||||
|
set_logging()
|
||||||
|
t = time.time()
|
||||||
|
|
||||||
|
# Load PyTorch model
|
||||||
|
device = select_device(opt.device)
|
||||||
|
model = attempt_load(opt.weights, map_location=device) # load FP32 model
|
||||||
|
labels = model.names
|
||||||
|
|
||||||
|
# Checks
|
||||||
|
gs = int(max(model.stride)) # grid size (max stride)
|
||||||
|
opt.img_size = [check_img_size(x, gs) for x in opt.img_size] # verify img_size are gs-multiples
|
||||||
|
|
||||||
|
# Input
|
||||||
|
img = torch.zeros(opt.batch_size, 3, *opt.img_size).to(device) # image size(1,3,320,192) iDetection
|
||||||
|
|
||||||
|
# Update model
|
||||||
|
for k, m in model.named_modules():
|
||||||
|
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
|
||||||
|
if isinstance(m, models.common.Conv): # assign export-friendly activations
|
||||||
|
if isinstance(m.act, nn.Hardswish):
|
||||||
|
m.act = Hardswish()
|
||||||
|
elif isinstance(m.act, nn.SiLU):
|
||||||
|
m.act = SiLU()
|
||||||
|
# elif isinstance(m, models.yolo.Detect):
|
||||||
|
# m.forward = m.forward_export # assign forward (optional)
|
||||||
|
model.model[-1].export = not opt.grid # set Detect() layer grid export
|
||||||
|
y = model(img) # dry run
|
||||||
|
|
||||||
|
# TorchScript export
|
||||||
|
try:
|
||||||
|
print('\nStarting TorchScript export with torch %s...' % torch.__version__)
|
||||||
|
f = opt.weights.replace('.pt', '.torchscript.pt') # filename
|
||||||
|
ts = torch.jit.trace(model, img)
|
||||||
|
ts.save(f)
|
||||||
|
print('TorchScript export success, saved as %s' % f)
|
||||||
|
except Exception as e:
|
||||||
|
print('TorchScript export failure: %s' % e)
|
||||||
|
|
||||||
|
# ONNX export
|
||||||
|
try:
|
||||||
|
import onnx
|
||||||
|
|
||||||
|
print('\nStarting ONNX export with onnx %s...' % onnx.__version__)
|
||||||
|
f = opt.weights.replace('.pt', '.onnx') # filename
|
||||||
|
torch.onnx.export(model, img, f, verbose=False, opset_version=12, input_names=['images'],
|
||||||
|
output_names=['classes', 'boxes'] if y is None else ['output'],
|
||||||
|
dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # size(1,3,640,640)
|
||||||
|
'output': {0: 'batch', 2: 'y', 3: 'x'}} if opt.dynamic else None)
|
||||||
|
|
||||||
|
# Checks
|
||||||
|
onnx_model = onnx.load(f) # load onnx model
|
||||||
|
onnx.checker.check_model(onnx_model) # check onnx model
|
||||||
|
# print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model
|
||||||
|
print('ONNX export success, saved as %s' % f)
|
||||||
|
except Exception as e:
|
||||||
|
print('ONNX export failure: %s' % e)
|
||||||
|
|
||||||
|
# CoreML export
|
||||||
|
try:
|
||||||
|
import coremltools as ct
|
||||||
|
|
||||||
|
print('\nStarting CoreML export with coremltools %s...' % ct.__version__)
|
||||||
|
# convert model from torchscript and apply pixel scaling as per detect.py
|
||||||
|
model = ct.convert(ts, inputs=[ct.ImageType(name='image', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])])
|
||||||
|
f = opt.weights.replace('.pt', '.mlmodel') # filename
|
||||||
|
model.save(f)
|
||||||
|
print('CoreML export success, saved as %s' % f)
|
||||||
|
except Exception as e:
|
||||||
|
print('CoreML export failure: %s' % e)
|
||||||
|
|
||||||
|
# Finish
|
||||||
|
print('\nExport complete (%.2fs). Visualize with https://github.com/lutzroeder/netron.' % (time.time() - t))
|
153
hubconf.py
Executable file
153
hubconf.py
Executable file
@ -0,0 +1,153 @@
|
|||||||
|
"""File for accessing YOLOv5 models via PyTorch Hub https://pytorch.org/hub/ultralytics_yolov5/
|
||||||
|
|
||||||
|
Usage:
|
||||||
|
import torch
|
||||||
|
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')
|
||||||
|
"""
|
||||||
|
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from models.yolo import Model
|
||||||
|
from utils.general import check_requirements, set_logging
|
||||||
|
from utils.google_utils import attempt_download
|
||||||
|
from utils.torch_utils import select_device
|
||||||
|
|
||||||
|
dependencies = ['torch', 'yaml']
|
||||||
|
check_requirements(Path(__file__).parent / 'requirements.txt', exclude=('pycocotools', 'thop'))
|
||||||
|
set_logging()
|
||||||
|
|
||||||
|
|
||||||
|
def create(name, pretrained, channels, classes, autoshape):
|
||||||
|
"""Creates a specified YOLOv5 model
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
name (str): name of model, i.e. 'yolov5s'
|
||||||
|
pretrained (bool): load pretrained weights into the model
|
||||||
|
channels (int): number of input channels
|
||||||
|
classes (int): number of model classes
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
pytorch model
|
||||||
|
"""
|
||||||
|
config = Path(__file__).parent / 'models' / f'{name}.yaml' # model.yaml path
|
||||||
|
try:
|
||||||
|
model = Model(config, channels, classes)
|
||||||
|
if pretrained:
|
||||||
|
fname = f'{name}.pt' # checkpoint filename
|
||||||
|
attempt_download(fname) # download if not found locally
|
||||||
|
ckpt = torch.load(fname, map_location=torch.device('cpu')) # load
|
||||||
|
msd = model.state_dict() # model state_dict
|
||||||
|
csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
|
||||||
|
csd = {k: v for k, v in csd.items() if msd[k].shape == v.shape} # filter
|
||||||
|
model.load_state_dict(csd, strict=False) # load
|
||||||
|
if len(ckpt['model'].names) == classes:
|
||||||
|
model.names = ckpt['model'].names # set class names attribute
|
||||||
|
if autoshape:
|
||||||
|
model = model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS
|
||||||
|
device = select_device('0' if torch.cuda.is_available() else 'cpu') # default to GPU if available
|
||||||
|
return model.to(device)
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
help_url = 'https://github.com/ultralytics/yolov5/issues/36'
|
||||||
|
s = 'Cache maybe be out of date, try force_reload=True. See %s for help.' % help_url
|
||||||
|
raise Exception(s) from e
|
||||||
|
|
||||||
|
|
||||||
|
def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True):
|
||||||
|
"""YOLOv5-small model from https://github.com/ultralytics/yolov5
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
pretrained (bool): load pretrained weights into the model, default=False
|
||||||
|
channels (int): number of input channels, default=3
|
||||||
|
classes (int): number of model classes, default=80
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
pytorch model
|
||||||
|
"""
|
||||||
|
return create('yolov5s', pretrained, channels, classes, autoshape)
|
||||||
|
|
||||||
|
|
||||||
|
def yolov5m(pretrained=True, channels=3, classes=80, autoshape=True):
|
||||||
|
"""YOLOv5-medium model from https://github.com/ultralytics/yolov5
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
pretrained (bool): load pretrained weights into the model, default=False
|
||||||
|
channels (int): number of input channels, default=3
|
||||||
|
classes (int): number of model classes, default=80
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
pytorch model
|
||||||
|
"""
|
||||||
|
return create('yolov5m', pretrained, channels, classes, autoshape)
|
||||||
|
|
||||||
|
|
||||||
|
def yolov5l(pretrained=True, channels=3, classes=80, autoshape=True):
|
||||||
|
"""YOLOv5-large model from https://github.com/ultralytics/yolov5
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
pretrained (bool): load pretrained weights into the model, default=False
|
||||||
|
channels (int): number of input channels, default=3
|
||||||
|
classes (int): number of model classes, default=80
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
pytorch model
|
||||||
|
"""
|
||||||
|
return create('yolov5l', pretrained, channels, classes, autoshape)
|
||||||
|
|
||||||
|
|
||||||
|
def yolov5x(pretrained=True, channels=3, classes=80, autoshape=True):
|
||||||
|
"""YOLOv5-xlarge model from https://github.com/ultralytics/yolov5
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
pretrained (bool): load pretrained weights into the model, default=False
|
||||||
|
channels (int): number of input channels, default=3
|
||||||
|
classes (int): number of model classes, default=80
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
pytorch model
|
||||||
|
"""
|
||||||
|
return create('yolov5x', pretrained, channels, classes, autoshape)
|
||||||
|
|
||||||
|
|
||||||
|
def custom(path_or_model='path/to/model.pt', autoshape=True):
|
||||||
|
"""YOLOv5-custom model from https://github.com/ultralytics/yolov5
|
||||||
|
|
||||||
|
Arguments (3 options):
|
||||||
|
path_or_model (str): 'path/to/model.pt'
|
||||||
|
path_or_model (dict): torch.load('path/to/model.pt')
|
||||||
|
path_or_model (nn.Module): torch.load('path/to/model.pt')['model']
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
pytorch model
|
||||||
|
"""
|
||||||
|
model = torch.load(path_or_model) if isinstance(path_or_model, str) else path_or_model # load checkpoint
|
||||||
|
if isinstance(model, dict):
|
||||||
|
model = model['ema' if model.get('ema') else 'model'] # load model
|
||||||
|
|
||||||
|
hub_model = Model(model.yaml).to(next(model.parameters()).device) # create
|
||||||
|
hub_model.load_state_dict(model.float().state_dict()) # load state_dict
|
||||||
|
hub_model.names = model.names # class names
|
||||||
|
if autoshape:
|
||||||
|
hub_model = hub_model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS
|
||||||
|
device = select_device('0' if torch.cuda.is_available() else 'cpu') # default to GPU if available
|
||||||
|
return hub_model.to(device)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
model = create(name='yolov5s', pretrained=True, channels=3, classes=80, autoshape=True) # pretrained example
|
||||||
|
# model = custom(path_or_model='path/to/model.pt') # custom example
|
||||||
|
|
||||||
|
# Verify inference
|
||||||
|
import numpy as np
|
||||||
|
from PIL import Image
|
||||||
|
|
||||||
|
imgs = [Image.open('data/images/bus.jpg'), # PIL
|
||||||
|
'data/images/zidane.jpg', # filename
|
||||||
|
'https://github.com/ultralytics/yolov5/raw/master/data/images/bus.jpg', # URI
|
||||||
|
np.zeros((640, 480, 3))] # numpy
|
||||||
|
|
||||||
|
results = model(imgs) # batched inference
|
||||||
|
results.print()
|
||||||
|
results.save()
|
91
ieemoo-ai-zhanting.py
Executable file
91
ieemoo-ai-zhanting.py
Executable file
@ -0,0 +1,91 @@
|
|||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
from flask import request, Flask
|
||||||
|
import numpy as np
|
||||||
|
import json
|
||||||
|
import time
|
||||||
|
import cv2, base64
|
||||||
|
import argparse
|
||||||
|
import sys, os
|
||||||
|
import torch
|
||||||
|
from PIL import Image
|
||||||
|
import datetime
|
||||||
|
from torchvision import transforms
|
||||||
|
# from models.modeling import VisionTransformer, CONFIGS
|
||||||
|
from gevent.pywsgi import WSGIServer
|
||||||
|
sys.path.insert(0, ".")
|
||||||
|
|
||||||
|
import detect
|
||||||
|
|
||||||
|
app = Flask(__name__)
|
||||||
|
app.use_reloader=False
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument('--weights', nargs='+', type=str, default='runs/zhanting/yolov5l_finetune/exp/weights/best.pt', help='model.pt path(s)')
|
||||||
|
parser.add_argument('--source', type=str, default='data/images/1.jpg', help='source') # file/folder, 0 for webcam
|
||||||
|
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
|
||||||
|
parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
|
||||||
|
parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
|
||||||
|
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
||||||
|
parser.add_argument('--view-img', type=bool, default=True, help='display results')
|
||||||
|
parser.add_argument('--save-txt', type=bool, default=True, help='save results to *.txt')
|
||||||
|
parser.add_argument('--save-conf', type=bool, default=True, help='save confidences in --save-txt labels')
|
||||||
|
parser.add_argument('--nosave', type=bool, default=True, help='do not save images/videos')
|
||||||
|
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
|
||||||
|
parser.add_argument('--agnostic-nms', type=bool, default=True, help='class-agnostic NMS')
|
||||||
|
parser.add_argument('--augment', type=bool, default=True, help='augmented inference')
|
||||||
|
parser.add_argument('--update', type=bool, default=True, help='update all models')
|
||||||
|
parser.add_argument('--project', default='runs/detect', help='save results to project/name')
|
||||||
|
parser.add_argument('--name', default='exp', help='save results to project/name')
|
||||||
|
parser.add_argument('--exist-ok', type=bool, default=True, help='existing project/name ok, do not increment')
|
||||||
|
|
||||||
|
opt = parser.parse_args()
|
||||||
|
#opt, unknown = parser.parse_known_args()
|
||||||
|
@app.route("/zhanting", methods=['POST'])
|
||||||
|
def get_isempty():
|
||||||
|
start = time.time()
|
||||||
|
data = request.get_data()
|
||||||
|
ip = request.remote_addr
|
||||||
|
print('------ ip = %s ------' % ip)
|
||||||
|
|
||||||
|
json_data = json.loads(data.decode("utf-8"))
|
||||||
|
# getdateend = time.time()
|
||||||
|
# print('get date use time: {0:.2f}s'.format(getdateend - start))
|
||||||
|
|
||||||
|
pic = json_data.get("file")
|
||||||
|
result = {"success": "false",
|
||||||
|
"rst_cls": '-1',
|
||||||
|
}
|
||||||
|
|
||||||
|
imgdata = base64.b64decode(pic)
|
||||||
|
image_path = 'data/images/1.jpg'
|
||||||
|
file = open(image_path, 'wb')
|
||||||
|
file.write(imgdata)
|
||||||
|
pred = detect.detect(opt)
|
||||||
|
print('pred', pred)
|
||||||
|
getdateend = time.time()
|
||||||
|
now_time = datetime.datetime.now()
|
||||||
|
print('now_time', now_time)
|
||||||
|
print('get date use time: {0:.2f}s'.format(getdateend - start))
|
||||||
|
|
||||||
|
return repr(pred)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
app.run()
|
||||||
|
#http_server = WSGIServer(('0.0.0.0', 8083), app)
|
||||||
|
#http_server.serve_forever()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
91
ieemoo_ai_zhanting.py
Executable file
91
ieemoo_ai_zhanting.py
Executable file
@ -0,0 +1,91 @@
|
|||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
from flask import request, Flask
|
||||||
|
import numpy as np
|
||||||
|
import json
|
||||||
|
import time
|
||||||
|
import cv2, base64
|
||||||
|
import argparse
|
||||||
|
import sys, os
|
||||||
|
import torch
|
||||||
|
from PIL import Image
|
||||||
|
import datetime
|
||||||
|
from torchvision import transforms
|
||||||
|
# from models.modeling import VisionTransformer, CONFIGS
|
||||||
|
from gevent.pywsgi import WSGIServer
|
||||||
|
sys.path.insert(0, ".")
|
||||||
|
|
||||||
|
import detect
|
||||||
|
|
||||||
|
app = Flask(__name__)
|
||||||
|
app.use_reloader=False
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument('--weights', nargs='+', type=str, default='runs/zhanting/yolov5l_finetune/exp/weights/best.pt', help='model.pt path(s)')
|
||||||
|
parser.add_argument('--source', type=str, default='data/images/1.jpg', help='source') # file/folder, 0 for webcam
|
||||||
|
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
|
||||||
|
parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
|
||||||
|
parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
|
||||||
|
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
||||||
|
parser.add_argument('--view-img', type=bool, default=True, help='display results')
|
||||||
|
parser.add_argument('--save-txt', type=bool, default=True, help='save results to *.txt')
|
||||||
|
parser.add_argument('--save-conf', type=bool, default=True, help='save confidences in --save-txt labels')
|
||||||
|
parser.add_argument('--nosave', type=bool, default=True, help='do not save images/videos')
|
||||||
|
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
|
||||||
|
parser.add_argument('--agnostic-nms', type=bool, default=True, help='class-agnostic NMS')
|
||||||
|
parser.add_argument('--augment', type=bool, default=True, help='augmented inference')
|
||||||
|
parser.add_argument('--update', type=bool, default=True, help='update all models')
|
||||||
|
parser.add_argument('--project', default='runs/detect', help='save results to project/name')
|
||||||
|
parser.add_argument('--name', default='exp', help='save results to project/name')
|
||||||
|
parser.add_argument('--exist-ok', type=bool, default=True, help='existing project/name ok, do not increment')
|
||||||
|
|
||||||
|
opt = parser.parse_args()
|
||||||
|
#opt, unknown = parser.parse_known_args()
|
||||||
|
@app.route("/zhanting", methods=['POST'])
|
||||||
|
def get_isempty():
|
||||||
|
start = time.time()
|
||||||
|
data = request.get_data()
|
||||||
|
ip = request.remote_addr
|
||||||
|
print('------ ip = %s ------' % ip)
|
||||||
|
|
||||||
|
json_data = json.loads(data.decode("utf-8"))
|
||||||
|
# getdateend = time.time()
|
||||||
|
# print('get date use time: {0:.2f}s'.format(getdateend - start))
|
||||||
|
|
||||||
|
pic = json_data.get("file")
|
||||||
|
result = {"success": "false",
|
||||||
|
"rst_cls": '-1',
|
||||||
|
}
|
||||||
|
|
||||||
|
imgdata = base64.b64decode(pic)
|
||||||
|
image_path = 'data/images/1.jpg'
|
||||||
|
file = open(image_path, 'wb')
|
||||||
|
file.write(imgdata)
|
||||||
|
pred = detect.detect(opt)
|
||||||
|
print('pred', pred)
|
||||||
|
getdateend = time.time()
|
||||||
|
now_time = datetime.datetime.now()
|
||||||
|
print('now_time', now_time)
|
||||||
|
print('get date use time: {0:.2f}s'.format(getdateend - start))
|
||||||
|
|
||||||
|
return repr(pred)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
#app.run()
|
||||||
|
http_server = WSGIServer(('0.0.0.0', 8083), app)
|
||||||
|
http_server.serve_forever()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
4
init.sh
Normal file
4
init.sh
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
/opt/miniconda3/bin/conda activate ieemoo
|
||||||
|
|
||||||
|
pip3 install -r requirements.txt
|
||||||
|
|
81
kmeans.py
Normal file
81
kmeans.py
Normal file
@ -0,0 +1,81 @@
|
|||||||
|
import numpy as np
|
||||||
|
|
||||||
|
def iou(box, clusters):
|
||||||
|
"""
|
||||||
|
Calculates the Intersection over Union (IoU) between a box and k clusters.
|
||||||
|
:param box: tuple or array, shifted to the origin (i. e. width and height)
|
||||||
|
:param clusters: numpy array of shape (k, 2) where k is the number of clusters
|
||||||
|
:return: numpy array of shape (k, 0) where k is the number of clusters
|
||||||
|
"""
|
||||||
|
x = np.minimum(clusters[:, 0], box[0])
|
||||||
|
y = np.minimum(clusters[:, 1], box[1])
|
||||||
|
if np.count_nonzero(x == 0) > 0 or np.count_nonzero(y == 0) > 0:
|
||||||
|
raise ValueError("Box has no area") # 如果报这个错,可以把这行改成pass即可
|
||||||
|
|
||||||
|
intersection = x * y
|
||||||
|
box_area = box[0] * box[1]
|
||||||
|
cluster_area = clusters[:, 0] * clusters[:, 1]
|
||||||
|
|
||||||
|
iou_ = intersection / (box_area + cluster_area - intersection)
|
||||||
|
|
||||||
|
return iou_
|
||||||
|
|
||||||
|
def avg_iou(boxes, clusters):
|
||||||
|
"""
|
||||||
|
Calculates the average Intersection over Union (IoU) between a numpy array of boxes and k clusters.
|
||||||
|
:param boxes: numpy array of shape (r, 2), where r is the number of rows
|
||||||
|
:param clusters: numpy array of shape (k, 2) where k is the number of clusters
|
||||||
|
:return: average IoU as a single float
|
||||||
|
"""
|
||||||
|
return np.mean([np.max(iou(boxes[i], clusters)) for i in range(boxes.shape[0])])
|
||||||
|
|
||||||
|
def translate_boxes(boxes):
|
||||||
|
"""
|
||||||
|
Translates all the boxes to the origin.
|
||||||
|
:param boxes: numpy array of shape (r, 4)
|
||||||
|
:return: numpy array of shape (r, 2)
|
||||||
|
"""
|
||||||
|
new_boxes = boxes.copy()
|
||||||
|
for row in range(new_boxes.shape[0]):
|
||||||
|
new_boxes[row][2] = np.abs(new_boxes[row][2] - new_boxes[row][0])
|
||||||
|
new_boxes[row][3] = np.abs(new_boxes[row][3] - new_boxes[row][1])
|
||||||
|
return np.delete(new_boxes, [0, 1], axis=1)
|
||||||
|
|
||||||
|
|
||||||
|
def kmeans(boxes, k, dist=np.median):
|
||||||
|
"""
|
||||||
|
Calculates k-means clustering with the Intersection over Union (IoU) metric.
|
||||||
|
:param boxes: numpy array of shape (r, 2), where r is the number of rows
|
||||||
|
:param k: number of clusters
|
||||||
|
:param dist: distance function
|
||||||
|
:return: numpy array of shape (k, 2)
|
||||||
|
"""
|
||||||
|
rows = boxes.shape[0]
|
||||||
|
|
||||||
|
distances = np.empty((rows, k))
|
||||||
|
last_clusters = np.zeros((rows,))
|
||||||
|
|
||||||
|
np.random.seed()
|
||||||
|
|
||||||
|
# the Forgy method will fail if the whole array contains the same rows
|
||||||
|
clusters = boxes[np.random.choice(rows, k, replace=False)]
|
||||||
|
|
||||||
|
while True:
|
||||||
|
for row in range(rows):
|
||||||
|
distances[row] = 1 - iou(boxes[row], clusters)
|
||||||
|
|
||||||
|
nearest_clusters = np.argmin(distances, axis=1)
|
||||||
|
|
||||||
|
if (last_clusters == nearest_clusters).all():
|
||||||
|
break
|
||||||
|
|
||||||
|
for cluster in range(k):
|
||||||
|
clusters[cluster] = dist(boxes[nearest_clusters == cluster], axis=0)
|
||||||
|
|
||||||
|
last_clusters = nearest_clusters
|
||||||
|
|
||||||
|
return clusters
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
a = np.array([[1, 2, 3, 4], [5, 7, 6, 8]])
|
||||||
|
print(translate_boxes(a))
|
0
models/__init__.py
Executable file
0
models/__init__.py
Executable file
371
models/common.py
Executable file
371
models/common.py
Executable file
@ -0,0 +1,371 @@
|
|||||||
|
# YOLOv5 common modules
|
||||||
|
|
||||||
|
import math
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import requests
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from PIL import Image
|
||||||
|
from torch.cuda import amp
|
||||||
|
|
||||||
|
from utils.datasets import letterbox
|
||||||
|
from utils.general import non_max_suppression, make_divisible, scale_coords, xyxy2xywh
|
||||||
|
from utils.plots import color_list, plot_one_box
|
||||||
|
from utils.torch_utils import time_synchronized
|
||||||
|
|
||||||
|
|
||||||
|
def autopad(k, p=None): # kernel, padding
|
||||||
|
# Pad to 'same'
|
||||||
|
if p is None:
|
||||||
|
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
|
||||||
|
return p
|
||||||
|
|
||||||
|
|
||||||
|
def DWConv(c1, c2, k=1, s=1, act=True):
|
||||||
|
# Depthwise convolution
|
||||||
|
return Conv(c1, c2, k, s, g=math.gcd(c1, c2), act=act)
|
||||||
|
|
||||||
|
|
||||||
|
class Conv(nn.Module):
|
||||||
|
# Standard convolution
|
||||||
|
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
|
||||||
|
super(Conv, self).__init__()
|
||||||
|
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
|
||||||
|
self.bn = nn.BatchNorm2d(c2)
|
||||||
|
self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return self.act(self.bn(self.conv(x)))
|
||||||
|
|
||||||
|
def fuseforward(self, x):
|
||||||
|
return self.act(self.conv(x))
|
||||||
|
|
||||||
|
|
||||||
|
class TransformerLayer(nn.Module):
|
||||||
|
# Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance)
|
||||||
|
def __init__(self, c, num_heads):
|
||||||
|
super().__init__()
|
||||||
|
self.q = nn.Linear(c, c, bias=False)
|
||||||
|
self.k = nn.Linear(c, c, bias=False)
|
||||||
|
self.v = nn.Linear(c, c, bias=False)
|
||||||
|
self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads)
|
||||||
|
self.fc1 = nn.Linear(c, c, bias=False)
|
||||||
|
self.fc2 = nn.Linear(c, c, bias=False)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x
|
||||||
|
x = self.fc2(self.fc1(x)) + x
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class TransformerBlock(nn.Module):
|
||||||
|
# Vision Transformer https://arxiv.org/abs/2010.11929
|
||||||
|
def __init__(self, c1, c2, num_heads, num_layers):
|
||||||
|
super().__init__()
|
||||||
|
self.conv = None
|
||||||
|
if c1 != c2:
|
||||||
|
self.conv = Conv(c1, c2)
|
||||||
|
self.linear = nn.Linear(c2, c2) # learnable position embedding
|
||||||
|
self.tr = nn.Sequential(*[TransformerLayer(c2, num_heads) for _ in range(num_layers)])
|
||||||
|
self.c2 = c2
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
if self.conv is not None:
|
||||||
|
x = self.conv(x)
|
||||||
|
b, _, w, h = x.shape
|
||||||
|
p = x.flatten(2)
|
||||||
|
p = p.unsqueeze(0)
|
||||||
|
p = p.transpose(0, 3)
|
||||||
|
p = p.squeeze(3)
|
||||||
|
e = self.linear(p)
|
||||||
|
x = p + e
|
||||||
|
|
||||||
|
x = self.tr(x)
|
||||||
|
x = x.unsqueeze(3)
|
||||||
|
x = x.transpose(0, 3)
|
||||||
|
x = x.reshape(b, self.c2, w, h)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class Bottleneck(nn.Module):
|
||||||
|
# Standard bottleneck
|
||||||
|
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
|
||||||
|
super(Bottleneck, self).__init__()
|
||||||
|
c_ = int(c2 * e) # hidden channels
|
||||||
|
self.cv1 = Conv(c1, c_, 1, 1)
|
||||||
|
self.cv2 = Conv(c_, c2, 3, 1, g=g)
|
||||||
|
self.add = shortcut and c1 == c2
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
|
||||||
|
|
||||||
|
|
||||||
|
class BottleneckCSP(nn.Module):
|
||||||
|
# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
|
||||||
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
||||||
|
super(BottleneckCSP, self).__init__()
|
||||||
|
c_ = int(c2 * e) # hidden channels
|
||||||
|
self.cv1 = Conv(c1, c_, 1, 1)
|
||||||
|
self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
|
||||||
|
self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
|
||||||
|
self.cv4 = Conv(2 * c_, c2, 1, 1)
|
||||||
|
self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
|
||||||
|
self.act = nn.LeakyReLU(0.1, inplace=True)
|
||||||
|
self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
y1 = self.cv3(self.m(self.cv1(x)))
|
||||||
|
y2 = self.cv2(x)
|
||||||
|
return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1))))
|
||||||
|
|
||||||
|
|
||||||
|
class C3(nn.Module):
|
||||||
|
# CSP Bottleneck with 3 convolutions
|
||||||
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
||||||
|
super(C3, self).__init__()
|
||||||
|
c_ = int(c2 * e) # hidden channels
|
||||||
|
self.cv1 = Conv(c1, c_, 1, 1)
|
||||||
|
self.cv2 = Conv(c1, c_, 1, 1)
|
||||||
|
self.cv3 = Conv(2 * c_, c2, 1) # act=FReLU(c2)
|
||||||
|
self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
|
||||||
|
# self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)])
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))
|
||||||
|
|
||||||
|
|
||||||
|
class C3TR(C3):
|
||||||
|
# C3 module with TransformerBlock()
|
||||||
|
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
||||||
|
super().__init__(c1, c2, n, shortcut, g, e)
|
||||||
|
c_ = int(c2 * e)
|
||||||
|
self.m = TransformerBlock(c_, c_, 4, n)
|
||||||
|
|
||||||
|
|
||||||
|
class SPP(nn.Module):
|
||||||
|
# Spatial pyramid pooling layer used in YOLOv3-SPP
|
||||||
|
def __init__(self, c1, c2, k=(5, 9, 13)):
|
||||||
|
super(SPP, self).__init__()
|
||||||
|
c_ = c1 // 2 # hidden channels
|
||||||
|
self.cv1 = Conv(c1, c_, 1, 1)
|
||||||
|
self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
|
||||||
|
self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x = self.cv1(x)
|
||||||
|
return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
|
||||||
|
|
||||||
|
|
||||||
|
class Focus(nn.Module):
|
||||||
|
# Focus wh information into c-space
|
||||||
|
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
|
||||||
|
super(Focus, self).__init__()
|
||||||
|
self.conv = Conv(c1 * 4, c2, k, s, p, g, act)
|
||||||
|
# self.contract = Contract(gain=2)
|
||||||
|
|
||||||
|
def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
|
||||||
|
return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1))
|
||||||
|
#return self.conv(torch.cat([x,x,x,x],1))#pt -> onnx
|
||||||
|
# return self.conv(self.contract(x))
|
||||||
|
|
||||||
|
|
||||||
|
class Contract(nn.Module):
|
||||||
|
# Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40)
|
||||||
|
def __init__(self, gain=2):
|
||||||
|
super().__init__()
|
||||||
|
self.gain = gain
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
N, C, H, W = x.size() # assert (H / s == 0) and (W / s == 0), 'Indivisible gain'
|
||||||
|
s = self.gain
|
||||||
|
x = x.view(N, C, H // s, s, W // s, s) # x(1,64,40,2,40,2)
|
||||||
|
x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # x(1,2,2,64,40,40)
|
||||||
|
return x.view(N, C * s * s, H // s, W // s) # x(1,256,40,40)
|
||||||
|
|
||||||
|
|
||||||
|
class Expand(nn.Module):
|
||||||
|
# Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160)
|
||||||
|
def __init__(self, gain=2):
|
||||||
|
super().__init__()
|
||||||
|
self.gain = gain
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
N, C, H, W = x.size() # assert C / s ** 2 == 0, 'Indivisible gain'
|
||||||
|
s = self.gain
|
||||||
|
x = x.view(N, s, s, C // s ** 2, H, W) # x(1,2,2,16,80,80)
|
||||||
|
x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # x(1,16,80,2,80,2)
|
||||||
|
return x.view(N, C // s ** 2, H * s, W * s) # x(1,16,160,160)
|
||||||
|
|
||||||
|
|
||||||
|
class Concat(nn.Module):
|
||||||
|
# Concatenate a list of tensors along dimension
|
||||||
|
def __init__(self, dimension=1):
|
||||||
|
super(Concat, self).__init__()
|
||||||
|
self.d = dimension
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return torch.cat(x, self.d)
|
||||||
|
|
||||||
|
|
||||||
|
class NMS(nn.Module):
|
||||||
|
# Non-Maximum Suppression (NMS) module
|
||||||
|
conf = 0.25 # confidence threshold
|
||||||
|
iou = 0.45 # IoU threshold
|
||||||
|
classes = None # (optional list) filter by class
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
super(NMS, self).__init__()
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return non_max_suppression(x[0], conf_thres=self.conf, iou_thres=self.iou, classes=self.classes)
|
||||||
|
|
||||||
|
|
||||||
|
class autoShape(nn.Module):
|
||||||
|
# input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
|
||||||
|
conf = 0.25 # NMS confidence threshold
|
||||||
|
iou = 0.45 # NMS IoU threshold
|
||||||
|
classes = None # (optional list) filter by class
|
||||||
|
|
||||||
|
def __init__(self, model):
|
||||||
|
super(autoShape, self).__init__()
|
||||||
|
self.model = model.eval()
|
||||||
|
|
||||||
|
def autoshape(self):
|
||||||
|
print('autoShape already enabled, skipping... ') # model already converted to model.autoshape()
|
||||||
|
return self
|
||||||
|
|
||||||
|
def forward(self, imgs, size=640, augment=False, profile=False):
|
||||||
|
# Inference from various sources. For height=720, width=1280, RGB images example inputs are:
|
||||||
|
# filename: imgs = 'data/samples/zidane.jpg'
|
||||||
|
# URI: = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/zidane.jpg'
|
||||||
|
# OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(720,1280,3)
|
||||||
|
# PIL: = Image.open('image.jpg') # HWC x(720,1280,3)
|
||||||
|
# numpy: = np.zeros((720,1280,3)) # HWC
|
||||||
|
# torch: = torch.zeros(16,3,720,1280) # BCHW
|
||||||
|
# multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images
|
||||||
|
|
||||||
|
t = [time_synchronized()]
|
||||||
|
p = next(self.model.parameters()) # for device and type
|
||||||
|
if isinstance(imgs, torch.Tensor): # torch
|
||||||
|
return self.model(imgs.to(p.device).type_as(p), augment, profile) # inference
|
||||||
|
|
||||||
|
# Pre-process
|
||||||
|
n, imgs = (len(imgs), imgs) if isinstance(imgs, list) else (1, [imgs]) # number of images, list of images
|
||||||
|
shape0, shape1, files = [], [], [] # image and inference shapes, filenames
|
||||||
|
for i, im in enumerate(imgs):
|
||||||
|
if isinstance(im, str): # filename or uri
|
||||||
|
im, f = Image.open(requests.get(im, stream=True).raw if im.startswith('http') else im), im # open
|
||||||
|
im.filename = f # for uri
|
||||||
|
files.append(Path(im.filename).with_suffix('.jpg').name if isinstance(im, Image.Image) else f'image{i}.jpg')
|
||||||
|
im = np.array(im) # to numpy
|
||||||
|
if im.shape[0] < 5: # image in CHW
|
||||||
|
im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1)
|
||||||
|
im = im[:, :, :3] if im.ndim == 3 else np.tile(im[:, :, None], 3) # enforce 3ch input
|
||||||
|
s = im.shape[:2] # HWC
|
||||||
|
shape0.append(s) # image shape
|
||||||
|
g = (size / max(s)) # gain
|
||||||
|
shape1.append([y * g for y in s])
|
||||||
|
imgs[i] = im # update
|
||||||
|
shape1 = [make_divisible(x, int(self.stride.max())) for x in np.stack(shape1, 0).max(0)] # inference shape
|
||||||
|
x = [letterbox(im, new_shape=shape1, auto=False)[0] for im in imgs] # pad
|
||||||
|
x = np.stack(x, 0) if n > 1 else x[0][None] # stack
|
||||||
|
x = np.ascontiguousarray(x.transpose((0, 3, 1, 2))) # BHWC to BCHW
|
||||||
|
x = torch.from_numpy(x).to(p.device).type_as(p) / 255. # uint8 to fp16/32
|
||||||
|
t.append(time_synchronized())
|
||||||
|
|
||||||
|
with torch.no_grad(), amp.autocast(enabled=p.device.type != 'cpu'):
|
||||||
|
# Inference
|
||||||
|
y = self.model(x, augment, profile)[0] # forward
|
||||||
|
t.append(time_synchronized())
|
||||||
|
|
||||||
|
# Post-process
|
||||||
|
y = non_max_suppression(y, conf_thres=self.conf, iou_thres=self.iou, classes=self.classes) # NMS
|
||||||
|
for i in range(n):
|
||||||
|
scale_coords(shape1, y[i][:, :4], shape0[i])
|
||||||
|
|
||||||
|
t.append(time_synchronized())
|
||||||
|
return Detections(imgs, y, files, t, self.names, x.shape)
|
||||||
|
|
||||||
|
|
||||||
|
class Detections:
|
||||||
|
# detections class for YOLOv5 inference results
|
||||||
|
def __init__(self, imgs, pred, files, times=None, names=None, shape=None):
|
||||||
|
super(Detections, self).__init__()
|
||||||
|
d = pred[0].device # device
|
||||||
|
gn = [torch.tensor([*[im.shape[i] for i in [1, 0, 1, 0]], 1., 1.], device=d) for im in imgs] # normalizations
|
||||||
|
self.imgs = imgs # list of images as numpy arrays
|
||||||
|
self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls)
|
||||||
|
self.names = names # class names
|
||||||
|
self.files = files # image filenames
|
||||||
|
self.xyxy = pred # xyxy pixels
|
||||||
|
self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels
|
||||||
|
self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized
|
||||||
|
self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized
|
||||||
|
self.n = len(self.pred) # number of images (batch size)
|
||||||
|
self.t = tuple((times[i + 1] - times[i]) * 1000 / self.n for i in range(3)) # timestamps (ms)
|
||||||
|
self.s = shape # inference BCHW shape
|
||||||
|
|
||||||
|
def display(self, pprint=False, show=False, save=False, render=False, save_dir=''):
|
||||||
|
colors = color_list()
|
||||||
|
for i, (img, pred) in enumerate(zip(self.imgs, self.pred)):
|
||||||
|
str = f'image {i + 1}/{len(self.pred)}: {img.shape[0]}x{img.shape[1]} '
|
||||||
|
if pred is not None:
|
||||||
|
for c in pred[:, -1].unique():
|
||||||
|
n = (pred[:, -1] == c).sum() # detections per class
|
||||||
|
str += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string
|
||||||
|
if show or save or render:
|
||||||
|
for *box, conf, cls in pred: # xyxy, confidence, class
|
||||||
|
label = f'{self.names[int(cls)]} {conf:.2f}'
|
||||||
|
plot_one_box(box, img, label=label, color=colors[int(cls) % 10])
|
||||||
|
img = Image.fromarray(img.astype(np.uint8)) if isinstance(img, np.ndarray) else img # from np
|
||||||
|
if pprint:
|
||||||
|
print(str.rstrip(', '))
|
||||||
|
if show:
|
||||||
|
img.show(self.files[i]) # show
|
||||||
|
if save:
|
||||||
|
f = Path(save_dir) / self.files[i]
|
||||||
|
img.save(f) # save
|
||||||
|
print(f"{'Saving' * (i == 0)} {f},", end='' if i < self.n - 1 else ' done.\n')
|
||||||
|
if render:
|
||||||
|
self.imgs[i] = np.asarray(img)
|
||||||
|
|
||||||
|
def print(self):
|
||||||
|
self.display(pprint=True) # print results
|
||||||
|
print(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {tuple(self.s)}' % self.t)
|
||||||
|
|
||||||
|
def show(self):
|
||||||
|
self.display(show=True) # show results
|
||||||
|
|
||||||
|
def save(self, save_dir='results/'):
|
||||||
|
Path(save_dir).mkdir(exist_ok=True)
|
||||||
|
self.display(save=True, save_dir=save_dir) # save results
|
||||||
|
|
||||||
|
def render(self):
|
||||||
|
self.display(render=True) # render results
|
||||||
|
return self.imgs
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return self.n
|
||||||
|
|
||||||
|
def tolist(self):
|
||||||
|
# return a list of Detections objects, i.e. 'for result in results.tolist():'
|
||||||
|
x = [Detections([self.imgs[i]], [self.pred[i]], self.names) for i in range(self.n)]
|
||||||
|
for d in x:
|
||||||
|
for k in ['imgs', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']:
|
||||||
|
setattr(d, k, getattr(d, k)[0]) # pop out of list
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class Classify(nn.Module):
|
||||||
|
# Classification head, i.e. x(b,c1,20,20) to x(b,c2)
|
||||||
|
def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups
|
||||||
|
super(Classify, self).__init__()
|
||||||
|
self.aap = nn.AdaptiveAvgPool2d(1) # to x(b,c1,1,1)
|
||||||
|
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g) # to x(b,c2,1,1)
|
||||||
|
self.flat = nn.Flatten()
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
z = torch.cat([self.aap(y) for y in (x if isinstance(x, list) else [x])], 1) # cat if list
|
||||||
|
return self.flat(self.conv(z)) # flatten to x(b,c2)
|
134
models/experimental.py
Executable file
134
models/experimental.py
Executable file
@ -0,0 +1,134 @@
|
|||||||
|
# YOLOv5 experimental modules
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
|
||||||
|
from models.common import Conv, DWConv
|
||||||
|
from utils.google_utils import attempt_download
|
||||||
|
|
||||||
|
|
||||||
|
class CrossConv(nn.Module):
|
||||||
|
# Cross Convolution Downsample
|
||||||
|
def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
|
||||||
|
# ch_in, ch_out, kernel, stride, groups, expansion, shortcut
|
||||||
|
super(CrossConv, self).__init__()
|
||||||
|
c_ = int(c2 * e) # hidden channels
|
||||||
|
self.cv1 = Conv(c1, c_, (1, k), (1, s))
|
||||||
|
self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
|
||||||
|
self.add = shortcut and c1 == c2
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
|
||||||
|
|
||||||
|
|
||||||
|
class Sum(nn.Module):
|
||||||
|
# Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
|
||||||
|
def __init__(self, n, weight=False): # n: number of inputs
|
||||||
|
super(Sum, self).__init__()
|
||||||
|
self.weight = weight # apply weights boolean
|
||||||
|
self.iter = range(n - 1) # iter object
|
||||||
|
if weight:
|
||||||
|
self.w = nn.Parameter(-torch.arange(1., n) / 2, requires_grad=True) # layer weights
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
y = x[0] # no weight
|
||||||
|
if self.weight:
|
||||||
|
w = torch.sigmoid(self.w) * 2
|
||||||
|
for i in self.iter:
|
||||||
|
y = y + x[i + 1] * w[i]
|
||||||
|
else:
|
||||||
|
for i in self.iter:
|
||||||
|
y = y + x[i + 1]
|
||||||
|
return y
|
||||||
|
|
||||||
|
|
||||||
|
class GhostConv(nn.Module):
|
||||||
|
# Ghost Convolution https://github.com/huawei-noah/ghostnet
|
||||||
|
def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
|
||||||
|
super(GhostConv, self).__init__()
|
||||||
|
c_ = c2 // 2 # hidden channels
|
||||||
|
self.cv1 = Conv(c1, c_, k, s, None, g, act)
|
||||||
|
self.cv2 = Conv(c_, c_, 5, 1, None, c_, act)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
y = self.cv1(x)
|
||||||
|
return torch.cat([y, self.cv2(y)], 1)
|
||||||
|
|
||||||
|
|
||||||
|
class GhostBottleneck(nn.Module):
|
||||||
|
# Ghost Bottleneck https://github.com/huawei-noah/ghostnet
|
||||||
|
def __init__(self, c1, c2, k=3, s=1): # ch_in, ch_out, kernel, stride
|
||||||
|
super(GhostBottleneck, self).__init__()
|
||||||
|
c_ = c2 // 2
|
||||||
|
self.conv = nn.Sequential(GhostConv(c1, c_, 1, 1), # pw
|
||||||
|
DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw
|
||||||
|
GhostConv(c_, c2, 1, 1, act=False)) # pw-linear
|
||||||
|
self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False),
|
||||||
|
Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return self.conv(x) + self.shortcut(x)
|
||||||
|
|
||||||
|
|
||||||
|
class MixConv2d(nn.Module):
|
||||||
|
# Mixed Depthwise Conv https://arxiv.org/abs/1907.09595
|
||||||
|
def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True):
|
||||||
|
super(MixConv2d, self).__init__()
|
||||||
|
groups = len(k)
|
||||||
|
if equal_ch: # equal c_ per group
|
||||||
|
i = torch.linspace(0, groups - 1E-6, c2).floor() # c2 indices
|
||||||
|
c_ = [(i == g).sum() for g in range(groups)] # intermediate channels
|
||||||
|
else: # equal weight.numel() per group
|
||||||
|
b = [c2] + [0] * groups
|
||||||
|
a = np.eye(groups + 1, groups, k=-1)
|
||||||
|
a -= np.roll(a, 1, axis=1)
|
||||||
|
a *= np.array(k) ** 2
|
||||||
|
a[0] = 1
|
||||||
|
c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
|
||||||
|
|
||||||
|
self.m = nn.ModuleList([nn.Conv2d(c1, int(c_[g]), k[g], s, k[g] // 2, bias=False) for g in range(groups)])
|
||||||
|
self.bn = nn.BatchNorm2d(c2)
|
||||||
|
self.act = nn.LeakyReLU(0.1, inplace=True)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
|
||||||
|
|
||||||
|
|
||||||
|
class Ensemble(nn.ModuleList):
|
||||||
|
# Ensemble of models
|
||||||
|
def __init__(self):
|
||||||
|
super(Ensemble, self).__init__()
|
||||||
|
|
||||||
|
def forward(self, x, augment=False):
|
||||||
|
y = []
|
||||||
|
for module in self:
|
||||||
|
y.append(module(x, augment)[0])
|
||||||
|
# y = torch.stack(y).max(0)[0] # max ensemble
|
||||||
|
# y = torch.stack(y).mean(0) # mean ensemble
|
||||||
|
y = torch.cat(y, 1) # nms ensemble
|
||||||
|
return y, None # inference, train output
|
||||||
|
|
||||||
|
|
||||||
|
def attempt_load(weights, map_location=None):
|
||||||
|
# Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
|
||||||
|
model = Ensemble()
|
||||||
|
for w in weights if isinstance(weights, list) else [weights]:
|
||||||
|
attempt_download(w)
|
||||||
|
ckpt = torch.load(w, map_location=map_location) # load
|
||||||
|
model.append(ckpt['ema' if ckpt.get('ema') else 'model'].float().fuse().eval()) # FP32 model
|
||||||
|
|
||||||
|
# Compatibility updates
|
||||||
|
for m in model.modules():
|
||||||
|
if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
|
||||||
|
m.inplace = True # pytorch 1.7.0 compatibility
|
||||||
|
elif type(m) is Conv:
|
||||||
|
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
|
||||||
|
|
||||||
|
if len(model) == 1:
|
||||||
|
return model[-1] # return model
|
||||||
|
else:
|
||||||
|
print('Ensemble created with %s\n' % weights)
|
||||||
|
for k in ['names', 'stride']:
|
||||||
|
setattr(model, k, getattr(model[-1], k))
|
||||||
|
return model # return ensemble
|
104
models/export.py
Executable file
104
models/export.py
Executable file
@ -0,0 +1,104 @@
|
|||||||
|
"""Exports a YOLOv5 *.pt model to ONNX and TorchScript formats
|
||||||
|
|
||||||
|
Usage:
|
||||||
|
$ export PYTHONPATH="$PWD" && python models/export.py --weights ./weights/yolov5s.pt --img 640 --batch 1
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import sys
|
||||||
|
import time
|
||||||
|
|
||||||
|
sys.path.append('./') # to run '$ python *.py' files in subdirectories
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
|
||||||
|
import models
|
||||||
|
from models.experimental import attempt_load
|
||||||
|
from utils.activations import Hardswish, SiLU
|
||||||
|
from utils.general import set_logging, check_img_size
|
||||||
|
from utils.torch_utils import select_device
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path') # from yolov5/models/
|
||||||
|
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width
|
||||||
|
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
|
||||||
|
parser.add_argument('--dynamic', action='store_true', help='dynamic ONNX axes')
|
||||||
|
parser.add_argument('--grid', action='store_true', help='export Detect() layer grid')
|
||||||
|
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
||||||
|
opt = parser.parse_args()
|
||||||
|
opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
|
||||||
|
print(opt)
|
||||||
|
set_logging()
|
||||||
|
t = time.time()
|
||||||
|
|
||||||
|
# Load PyTorch model
|
||||||
|
device = select_device(opt.device)
|
||||||
|
model = attempt_load(opt.weights, map_location=device) # load FP32 model
|
||||||
|
labels = model.names
|
||||||
|
|
||||||
|
# Checks
|
||||||
|
gs = int(max(model.stride)) # grid size (max stride)
|
||||||
|
opt.img_size = [check_img_size(x, gs) for x in opt.img_size] # verify img_size are gs-multiples
|
||||||
|
|
||||||
|
# Input
|
||||||
|
img = torch.zeros(opt.batch_size, 3, *opt.img_size).to(device) # image size(1,3,320,192) iDetection
|
||||||
|
|
||||||
|
# Update model
|
||||||
|
for k, m in model.named_modules():
|
||||||
|
m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
|
||||||
|
if isinstance(m, models.common.Conv): # assign export-friendly activations
|
||||||
|
if isinstance(m.act, nn.Hardswish):
|
||||||
|
m.act = Hardswish()
|
||||||
|
elif isinstance(m.act, nn.SiLU):
|
||||||
|
m.act = SiLU()
|
||||||
|
# elif isinstance(m, models.yolo.Detect):
|
||||||
|
# m.forward = m.forward_export # assign forward (optional)
|
||||||
|
model.model[-1].export = not opt.grid # set Detect() layer grid export
|
||||||
|
y = model(img) # dry run
|
||||||
|
|
||||||
|
# TorchScript export
|
||||||
|
try:
|
||||||
|
print('\nStarting TorchScript export with torch %s...' % torch.__version__)
|
||||||
|
f = opt.weights.replace('.pt', '.torchscript.pt') # filename
|
||||||
|
ts = torch.jit.trace(model, img)
|
||||||
|
ts.save(f)
|
||||||
|
print('TorchScript export success, saved as %s' % f)
|
||||||
|
except Exception as e:
|
||||||
|
print('TorchScript export failure: %s' % e)
|
||||||
|
|
||||||
|
# ONNX export
|
||||||
|
try:
|
||||||
|
import onnx
|
||||||
|
|
||||||
|
print('\nStarting ONNX export with onnx %s...' % onnx.__version__)
|
||||||
|
f = opt.weights.replace('.pt', '.onnx') # filename
|
||||||
|
torch.onnx.export(model, img, f, verbose=False, opset_version=12, input_names=['images'],
|
||||||
|
output_names=['classes', 'boxes'] if y is None else ['output'],
|
||||||
|
dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # size(1,3,640,640)
|
||||||
|
'output': {0: 'batch', 2: 'y', 3: 'x'}} if opt.dynamic else None)
|
||||||
|
|
||||||
|
# Checks
|
||||||
|
onnx_model = onnx.load(f) # load onnx model
|
||||||
|
onnx.checker.check_model(onnx_model) # check onnx model
|
||||||
|
# print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model
|
||||||
|
print('ONNX export success, saved as %s' % f)
|
||||||
|
except Exception as e:
|
||||||
|
print('ONNX export failure: %s' % e)
|
||||||
|
|
||||||
|
# CoreML export
|
||||||
|
try:
|
||||||
|
import coremltools as ct
|
||||||
|
|
||||||
|
print('\nStarting CoreML export with coremltools %s...' % ct.__version__)
|
||||||
|
# convert model from torchscript and apply pixel scaling as per detect.py
|
||||||
|
model = ct.convert(ts, inputs=[ct.ImageType(name='image', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])])
|
||||||
|
f = opt.weights.replace('.pt', '.mlmodel') # filename
|
||||||
|
model.save(f)
|
||||||
|
print('CoreML export success, saved as %s' % f)
|
||||||
|
except Exception as e:
|
||||||
|
print('CoreML export failure: %s' % e)
|
||||||
|
|
||||||
|
# Finish
|
||||||
|
print('\nExport complete (%.2fs). Visualize with https://github.com/lutzroeder/netron.' % (time.time() - t))
|
58
models/hub/anchors.yaml
Executable file
58
models/hub/anchors.yaml
Executable file
@ -0,0 +1,58 @@
|
|||||||
|
# Default YOLOv5 anchors for COCO data
|
||||||
|
|
||||||
|
|
||||||
|
# P5 -------------------------------------------------------------------------------------------------------------------
|
||||||
|
# P5-640:
|
||||||
|
anchors_p5_640:
|
||||||
|
- [ 10,13, 16,30, 33,23 ] # P3/8
|
||||||
|
- [ 30,61, 62,45, 59,119 ] # P4/16
|
||||||
|
- [ 116,90, 156,198, 373,326 ] # P5/32
|
||||||
|
|
||||||
|
|
||||||
|
# P6 -------------------------------------------------------------------------------------------------------------------
|
||||||
|
# P6-640: thr=0.25: 0.9964 BPR, 5.54 anchors past thr, n=12, img_size=640, metric_all=0.281/0.716-mean/best, past_thr=0.469-mean: 9,11, 21,19, 17,41, 43,32, 39,70, 86,64, 65,131, 134,130, 120,265, 282,180, 247,354, 512,387
|
||||||
|
anchors_p6_640:
|
||||||
|
- [ 9,11, 21,19, 17,41 ] # P3/8
|
||||||
|
- [ 43,32, 39,70, 86,64 ] # P4/16
|
||||||
|
- [ 65,131, 134,130, 120,265 ] # P5/32
|
||||||
|
- [ 282,180, 247,354, 512,387 ] # P6/64
|
||||||
|
|
||||||
|
# P6-1280: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1280, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 19,27, 44,40, 38,94, 96,68, 86,152, 180,137, 140,301, 303,264, 238,542, 436,615, 739,380, 925,792
|
||||||
|
anchors_p6_1280:
|
||||||
|
- [ 19,27, 44,40, 38,94 ] # P3/8
|
||||||
|
- [ 96,68, 86,152, 180,137 ] # P4/16
|
||||||
|
- [ 140,301, 303,264, 238,542 ] # P5/32
|
||||||
|
- [ 436,615, 739,380, 925,792 ] # P6/64
|
||||||
|
|
||||||
|
# P6-1920: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1920, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 28,41, 67,59, 57,141, 144,103, 129,227, 270,205, 209,452, 455,396, 358,812, 653,922, 1109,570, 1387,1187
|
||||||
|
anchors_p6_1920:
|
||||||
|
- [ 28,41, 67,59, 57,141 ] # P3/8
|
||||||
|
- [ 144,103, 129,227, 270,205 ] # P4/16
|
||||||
|
- [ 209,452, 455,396, 358,812 ] # P5/32
|
||||||
|
- [ 653,922, 1109,570, 1387,1187 ] # P6/64
|
||||||
|
|
||||||
|
|
||||||
|
# P7 -------------------------------------------------------------------------------------------------------------------
|
||||||
|
# P7-640: thr=0.25: 0.9962 BPR, 6.76 anchors past thr, n=15, img_size=640, metric_all=0.275/0.733-mean/best, past_thr=0.466-mean: 11,11, 13,30, 29,20, 30,46, 61,38, 39,92, 78,80, 146,66, 79,163, 149,150, 321,143, 157,303, 257,402, 359,290, 524,372
|
||||||
|
anchors_p7_640:
|
||||||
|
- [ 11,11, 13,30, 29,20 ] # P3/8
|
||||||
|
- [ 30,46, 61,38, 39,92 ] # P4/16
|
||||||
|
- [ 78,80, 146,66, 79,163 ] # P5/32
|
||||||
|
- [ 149,150, 321,143, 157,303 ] # P6/64
|
||||||
|
- [ 257,402, 359,290, 524,372 ] # P7/128
|
||||||
|
|
||||||
|
# P7-1280: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1280, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 19,22, 54,36, 32,77, 70,83, 138,71, 75,173, 165,159, 148,334, 375,151, 334,317, 251,626, 499,474, 750,326, 534,814, 1079,818
|
||||||
|
anchors_p7_1280:
|
||||||
|
- [ 19,22, 54,36, 32,77 ] # P3/8
|
||||||
|
- [ 70,83, 138,71, 75,173 ] # P4/16
|
||||||
|
- [ 165,159, 148,334, 375,151 ] # P5/32
|
||||||
|
- [ 334,317, 251,626, 499,474 ] # P6/64
|
||||||
|
- [ 750,326, 534,814, 1079,818 ] # P7/128
|
||||||
|
|
||||||
|
# P7-1920: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1920, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 29,34, 81,55, 47,115, 105,124, 207,107, 113,259, 247,238, 222,500, 563,227, 501,476, 376,939, 749,711, 1126,489, 801,1222, 1618,1227
|
||||||
|
anchors_p7_1920:
|
||||||
|
- [ 29,34, 81,55, 47,115 ] # P3/8
|
||||||
|
- [ 105,124, 207,107, 113,259 ] # P4/16
|
||||||
|
- [ 247,238, 222,500, 563,227 ] # P5/32
|
||||||
|
- [ 501,476, 376,939, 749,711 ] # P6/64
|
||||||
|
- [ 1126,489, 801,1222, 1618,1227 ] # P7/128
|
51
models/hub/yolov3-spp.yaml
Executable file
51
models/hub/yolov3-spp.yaml
Executable file
@ -0,0 +1,51 @@
|
|||||||
|
# parameters
|
||||||
|
nc: 80 # number of classes
|
||||||
|
depth_multiple: 1.0 # model depth multiple
|
||||||
|
width_multiple: 1.0 # layer channel multiple
|
||||||
|
|
||||||
|
# anchors
|
||||||
|
anchors:
|
||||||
|
- [10,13, 16,30, 33,23] # P3/8
|
||||||
|
- [30,61, 62,45, 59,119] # P4/16
|
||||||
|
- [116,90, 156,198, 373,326] # P5/32
|
||||||
|
|
||||||
|
# darknet53 backbone
|
||||||
|
backbone:
|
||||||
|
# [from, number, module, args]
|
||||||
|
[[-1, 1, Conv, [32, 3, 1]], # 0
|
||||||
|
[-1, 1, Conv, [64, 3, 2]], # 1-P1/2
|
||||||
|
[-1, 1, Bottleneck, [64]],
|
||||||
|
[-1, 1, Conv, [128, 3, 2]], # 3-P2/4
|
||||||
|
[-1, 2, Bottleneck, [128]],
|
||||||
|
[-1, 1, Conv, [256, 3, 2]], # 5-P3/8
|
||||||
|
[-1, 8, Bottleneck, [256]],
|
||||||
|
[-1, 1, Conv, [512, 3, 2]], # 7-P4/16
|
||||||
|
[-1, 8, Bottleneck, [512]],
|
||||||
|
[-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
|
||||||
|
[-1, 4, Bottleneck, [1024]], # 10
|
||||||
|
]
|
||||||
|
|
||||||
|
# YOLOv3-SPP head
|
||||||
|
head:
|
||||||
|
[[-1, 1, Bottleneck, [1024, False]],
|
||||||
|
[-1, 1, SPP, [512, [5, 9, 13]]],
|
||||||
|
[-1, 1, Conv, [1024, 3, 1]],
|
||||||
|
[-1, 1, Conv, [512, 1, 1]],
|
||||||
|
[-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
|
||||||
|
|
||||||
|
[-2, 1, Conv, [256, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 8], 1, Concat, [1]], # cat backbone P4
|
||||||
|
[-1, 1, Bottleneck, [512, False]],
|
||||||
|
[-1, 1, Bottleneck, [512, False]],
|
||||||
|
[-1, 1, Conv, [256, 1, 1]],
|
||||||
|
[-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
|
||||||
|
|
||||||
|
[-2, 1, Conv, [128, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 6], 1, Concat, [1]], # cat backbone P3
|
||||||
|
[-1, 1, Bottleneck, [256, False]],
|
||||||
|
[-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
|
||||||
|
|
||||||
|
[[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
||||||
|
]
|
41
models/hub/yolov3-tiny.yaml
Executable file
41
models/hub/yolov3-tiny.yaml
Executable file
@ -0,0 +1,41 @@
|
|||||||
|
# parameters
|
||||||
|
nc: 80 # number of classes
|
||||||
|
depth_multiple: 1.0 # model depth multiple
|
||||||
|
width_multiple: 1.0 # layer channel multiple
|
||||||
|
|
||||||
|
# anchors
|
||||||
|
anchors:
|
||||||
|
- [10,14, 23,27, 37,58] # P4/16
|
||||||
|
- [81,82, 135,169, 344,319] # P5/32
|
||||||
|
|
||||||
|
# YOLOv3-tiny backbone
|
||||||
|
backbone:
|
||||||
|
# [from, number, module, args]
|
||||||
|
[[-1, 1, Conv, [16, 3, 1]], # 0
|
||||||
|
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 1-P1/2
|
||||||
|
[-1, 1, Conv, [32, 3, 1]],
|
||||||
|
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 3-P2/4
|
||||||
|
[-1, 1, Conv, [64, 3, 1]],
|
||||||
|
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 5-P3/8
|
||||||
|
[-1, 1, Conv, [128, 3, 1]],
|
||||||
|
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 7-P4/16
|
||||||
|
[-1, 1, Conv, [256, 3, 1]],
|
||||||
|
[-1, 1, nn.MaxPool2d, [2, 2, 0]], # 9-P5/32
|
||||||
|
[-1, 1, Conv, [512, 3, 1]],
|
||||||
|
[-1, 1, nn.ZeroPad2d, [[0, 1, 0, 1]]], # 11
|
||||||
|
[-1, 1, nn.MaxPool2d, [2, 1, 0]], # 12
|
||||||
|
]
|
||||||
|
|
||||||
|
# YOLOv3-tiny head
|
||||||
|
head:
|
||||||
|
[[-1, 1, Conv, [1024, 3, 1]],
|
||||||
|
[-1, 1, Conv, [256, 1, 1]],
|
||||||
|
[-1, 1, Conv, [512, 3, 1]], # 15 (P5/32-large)
|
||||||
|
|
||||||
|
[-2, 1, Conv, [128, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 8], 1, Concat, [1]], # cat backbone P4
|
||||||
|
[-1, 1, Conv, [256, 3, 1]], # 19 (P4/16-medium)
|
||||||
|
|
||||||
|
[[19, 15], 1, Detect, [nc, anchors]], # Detect(P4, P5)
|
||||||
|
]
|
51
models/hub/yolov3.yaml
Executable file
51
models/hub/yolov3.yaml
Executable file
@ -0,0 +1,51 @@
|
|||||||
|
# parameters
|
||||||
|
nc: 80 # number of classes
|
||||||
|
depth_multiple: 1.0 # model depth multiple
|
||||||
|
width_multiple: 1.0 # layer channel multiple
|
||||||
|
|
||||||
|
# anchors
|
||||||
|
anchors:
|
||||||
|
- [10,13, 16,30, 33,23] # P3/8
|
||||||
|
- [30,61, 62,45, 59,119] # P4/16
|
||||||
|
- [116,90, 156,198, 373,326] # P5/32
|
||||||
|
|
||||||
|
# darknet53 backbone
|
||||||
|
backbone:
|
||||||
|
# [from, number, module, args]
|
||||||
|
[[-1, 1, Conv, [32, 3, 1]], # 0
|
||||||
|
[-1, 1, Conv, [64, 3, 2]], # 1-P1/2
|
||||||
|
[-1, 1, Bottleneck, [64]],
|
||||||
|
[-1, 1, Conv, [128, 3, 2]], # 3-P2/4
|
||||||
|
[-1, 2, Bottleneck, [128]],
|
||||||
|
[-1, 1, Conv, [256, 3, 2]], # 5-P3/8
|
||||||
|
[-1, 8, Bottleneck, [256]],
|
||||||
|
[-1, 1, Conv, [512, 3, 2]], # 7-P4/16
|
||||||
|
[-1, 8, Bottleneck, [512]],
|
||||||
|
[-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
|
||||||
|
[-1, 4, Bottleneck, [1024]], # 10
|
||||||
|
]
|
||||||
|
|
||||||
|
# YOLOv3 head
|
||||||
|
head:
|
||||||
|
[[-1, 1, Bottleneck, [1024, False]],
|
||||||
|
[-1, 1, Conv, [512, [1, 1]]],
|
||||||
|
[-1, 1, Conv, [1024, 3, 1]],
|
||||||
|
[-1, 1, Conv, [512, 1, 1]],
|
||||||
|
[-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
|
||||||
|
|
||||||
|
[-2, 1, Conv, [256, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 8], 1, Concat, [1]], # cat backbone P4
|
||||||
|
[-1, 1, Bottleneck, [512, False]],
|
||||||
|
[-1, 1, Bottleneck, [512, False]],
|
||||||
|
[-1, 1, Conv, [256, 1, 1]],
|
||||||
|
[-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
|
||||||
|
|
||||||
|
[-2, 1, Conv, [128, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 6], 1, Concat, [1]], # cat backbone P3
|
||||||
|
[-1, 1, Bottleneck, [256, False]],
|
||||||
|
[-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
|
||||||
|
|
||||||
|
[[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
||||||
|
]
|
42
models/hub/yolov5-fpn.yaml
Executable file
42
models/hub/yolov5-fpn.yaml
Executable file
@ -0,0 +1,42 @@
|
|||||||
|
# parameters
|
||||||
|
nc: 80 # number of classes
|
||||||
|
depth_multiple: 1.0 # model depth multiple
|
||||||
|
width_multiple: 1.0 # layer channel multiple
|
||||||
|
|
||||||
|
# anchors
|
||||||
|
anchors:
|
||||||
|
- [10,13, 16,30, 33,23] # P3/8
|
||||||
|
- [30,61, 62,45, 59,119] # P4/16
|
||||||
|
- [116,90, 156,198, 373,326] # P5/32
|
||||||
|
|
||||||
|
# YOLOv5 backbone
|
||||||
|
backbone:
|
||||||
|
# [from, number, module, args]
|
||||||
|
[[-1, 1, Focus, [64, 3]], # 0-P1/2
|
||||||
|
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||||
|
[-1, 3, Bottleneck, [128]],
|
||||||
|
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||||
|
[-1, 9, BottleneckCSP, [256]],
|
||||||
|
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||||
|
[-1, 9, BottleneckCSP, [512]],
|
||||||
|
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
||||||
|
[-1, 1, SPP, [1024, [5, 9, 13]]],
|
||||||
|
[-1, 6, BottleneckCSP, [1024]], # 9
|
||||||
|
]
|
||||||
|
|
||||||
|
# YOLOv5 FPN head
|
||||||
|
head:
|
||||||
|
[[-1, 3, BottleneckCSP, [1024, False]], # 10 (P5/32-large)
|
||||||
|
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||||
|
[-1, 1, Conv, [512, 1, 1]],
|
||||||
|
[-1, 3, BottleneckCSP, [512, False]], # 14 (P4/16-medium)
|
||||||
|
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||||
|
[-1, 1, Conv, [256, 1, 1]],
|
||||||
|
[-1, 3, BottleneckCSP, [256, False]], # 18 (P3/8-small)
|
||||||
|
|
||||||
|
[[18, 14, 10], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
||||||
|
]
|
54
models/hub/yolov5-p2.yaml
Executable file
54
models/hub/yolov5-p2.yaml
Executable file
@ -0,0 +1,54 @@
|
|||||||
|
# parameters
|
||||||
|
nc: 80 # number of classes
|
||||||
|
depth_multiple: 1.0 # model depth multiple
|
||||||
|
width_multiple: 1.0 # layer channel multiple
|
||||||
|
|
||||||
|
# anchors
|
||||||
|
anchors: 3
|
||||||
|
|
||||||
|
# YOLOv5 backbone
|
||||||
|
backbone:
|
||||||
|
# [from, number, module, args]
|
||||||
|
[ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2
|
||||||
|
[ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4
|
||||||
|
[ -1, 3, C3, [ 128 ] ],
|
||||||
|
[ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8
|
||||||
|
[ -1, 9, C3, [ 256 ] ],
|
||||||
|
[ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16
|
||||||
|
[ -1, 9, C3, [ 512 ] ],
|
||||||
|
[ -1, 1, Conv, [ 1024, 3, 2 ] ], # 7-P5/32
|
||||||
|
[ -1, 1, SPP, [ 1024, [ 5, 9, 13 ] ] ],
|
||||||
|
[ -1, 3, C3, [ 1024, False ] ], # 9
|
||||||
|
]
|
||||||
|
|
||||||
|
# YOLOv5 head
|
||||||
|
head:
|
||||||
|
[ [ -1, 1, Conv, [ 512, 1, 1 ] ],
|
||||||
|
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
||||||
|
[ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4
|
||||||
|
[ -1, 3, C3, [ 512, False ] ], # 13
|
||||||
|
|
||||||
|
[ -1, 1, Conv, [ 256, 1, 1 ] ],
|
||||||
|
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
||||||
|
[ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3
|
||||||
|
[ -1, 3, C3, [ 256, False ] ], # 17 (P3/8-small)
|
||||||
|
|
||||||
|
[ -1, 1, Conv, [ 128, 1, 1 ] ],
|
||||||
|
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
||||||
|
[ [ -1, 2 ], 1, Concat, [ 1 ] ], # cat backbone P2
|
||||||
|
[ -1, 1, C3, [ 128, False ] ], # 21 (P2/4-xsmall)
|
||||||
|
|
||||||
|
[ -1, 1, Conv, [ 128, 3, 2 ] ],
|
||||||
|
[ [ -1, 18 ], 1, Concat, [ 1 ] ], # cat head P3
|
||||||
|
[ -1, 3, C3, [ 256, False ] ], # 24 (P3/8-small)
|
||||||
|
|
||||||
|
[ -1, 1, Conv, [ 256, 3, 2 ] ],
|
||||||
|
[ [ -1, 14 ], 1, Concat, [ 1 ] ], # cat head P4
|
||||||
|
[ -1, 3, C3, [ 512, False ] ], # 27 (P4/16-medium)
|
||||||
|
|
||||||
|
[ -1, 1, Conv, [ 512, 3, 2 ] ],
|
||||||
|
[ [ -1, 10 ], 1, Concat, [ 1 ] ], # cat head P5
|
||||||
|
[ -1, 3, C3, [ 1024, False ] ], # 30 (P5/32-large)
|
||||||
|
|
||||||
|
[ [ 24, 27, 30 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5)
|
||||||
|
]
|
56
models/hub/yolov5-p6.yaml
Executable file
56
models/hub/yolov5-p6.yaml
Executable file
@ -0,0 +1,56 @@
|
|||||||
|
# parameters
|
||||||
|
nc: 80 # number of classes
|
||||||
|
depth_multiple: 1.0 # model depth multiple
|
||||||
|
width_multiple: 1.0 # layer channel multiple
|
||||||
|
|
||||||
|
# anchors
|
||||||
|
anchors: 3
|
||||||
|
|
||||||
|
# YOLOv5 backbone
|
||||||
|
backbone:
|
||||||
|
# [from, number, module, args]
|
||||||
|
[ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2
|
||||||
|
[ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4
|
||||||
|
[ -1, 3, C3, [ 128 ] ],
|
||||||
|
[ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8
|
||||||
|
[ -1, 9, C3, [ 256 ] ],
|
||||||
|
[ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16
|
||||||
|
[ -1, 9, C3, [ 512 ] ],
|
||||||
|
[ -1, 1, Conv, [ 768, 3, 2 ] ], # 7-P5/32
|
||||||
|
[ -1, 3, C3, [ 768 ] ],
|
||||||
|
[ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P6/64
|
||||||
|
[ -1, 1, SPP, [ 1024, [ 3, 5, 7 ] ] ],
|
||||||
|
[ -1, 3, C3, [ 1024, False ] ], # 11
|
||||||
|
]
|
||||||
|
|
||||||
|
# YOLOv5 head
|
||||||
|
head:
|
||||||
|
[ [ -1, 1, Conv, [ 768, 1, 1 ] ],
|
||||||
|
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
||||||
|
[ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P5
|
||||||
|
[ -1, 3, C3, [ 768, False ] ], # 15
|
||||||
|
|
||||||
|
[ -1, 1, Conv, [ 512, 1, 1 ] ],
|
||||||
|
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
||||||
|
[ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4
|
||||||
|
[ -1, 3, C3, [ 512, False ] ], # 19
|
||||||
|
|
||||||
|
[ -1, 1, Conv, [ 256, 1, 1 ] ],
|
||||||
|
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
||||||
|
[ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3
|
||||||
|
[ -1, 3, C3, [ 256, False ] ], # 23 (P3/8-small)
|
||||||
|
|
||||||
|
[ -1, 1, Conv, [ 256, 3, 2 ] ],
|
||||||
|
[ [ -1, 20 ], 1, Concat, [ 1 ] ], # cat head P4
|
||||||
|
[ -1, 3, C3, [ 512, False ] ], # 26 (P4/16-medium)
|
||||||
|
|
||||||
|
[ -1, 1, Conv, [ 512, 3, 2 ] ],
|
||||||
|
[ [ -1, 16 ], 1, Concat, [ 1 ] ], # cat head P5
|
||||||
|
[ -1, 3, C3, [ 768, False ] ], # 29 (P5/32-large)
|
||||||
|
|
||||||
|
[ -1, 1, Conv, [ 768, 3, 2 ] ],
|
||||||
|
[ [ -1, 12 ], 1, Concat, [ 1 ] ], # cat head P6
|
||||||
|
[ -1, 3, C3, [ 1024, False ] ], # 32 (P5/64-xlarge)
|
||||||
|
|
||||||
|
[ [ 23, 26, 29, 32 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6)
|
||||||
|
]
|
67
models/hub/yolov5-p7.yaml
Executable file
67
models/hub/yolov5-p7.yaml
Executable file
@ -0,0 +1,67 @@
|
|||||||
|
# parameters
|
||||||
|
nc: 80 # number of classes
|
||||||
|
depth_multiple: 1.0 # model depth multiple
|
||||||
|
width_multiple: 1.0 # layer channel multiple
|
||||||
|
|
||||||
|
# anchors
|
||||||
|
anchors: 3
|
||||||
|
|
||||||
|
# YOLOv5 backbone
|
||||||
|
backbone:
|
||||||
|
# [from, number, module, args]
|
||||||
|
[ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2
|
||||||
|
[ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4
|
||||||
|
[ -1, 3, C3, [ 128 ] ],
|
||||||
|
[ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8
|
||||||
|
[ -1, 9, C3, [ 256 ] ],
|
||||||
|
[ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16
|
||||||
|
[ -1, 9, C3, [ 512 ] ],
|
||||||
|
[ -1, 1, Conv, [ 768, 3, 2 ] ], # 7-P5/32
|
||||||
|
[ -1, 3, C3, [ 768 ] ],
|
||||||
|
[ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P6/64
|
||||||
|
[ -1, 3, C3, [ 1024 ] ],
|
||||||
|
[ -1, 1, Conv, [ 1280, 3, 2 ] ], # 11-P7/128
|
||||||
|
[ -1, 1, SPP, [ 1280, [ 3, 5 ] ] ],
|
||||||
|
[ -1, 3, C3, [ 1280, False ] ], # 13
|
||||||
|
]
|
||||||
|
|
||||||
|
# YOLOv5 head
|
||||||
|
head:
|
||||||
|
[ [ -1, 1, Conv, [ 1024, 1, 1 ] ],
|
||||||
|
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
||||||
|
[ [ -1, 10 ], 1, Concat, [ 1 ] ], # cat backbone P6
|
||||||
|
[ -1, 3, C3, [ 1024, False ] ], # 17
|
||||||
|
|
||||||
|
[ -1, 1, Conv, [ 768, 1, 1 ] ],
|
||||||
|
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
||||||
|
[ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P5
|
||||||
|
[ -1, 3, C3, [ 768, False ] ], # 21
|
||||||
|
|
||||||
|
[ -1, 1, Conv, [ 512, 1, 1 ] ],
|
||||||
|
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
||||||
|
[ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4
|
||||||
|
[ -1, 3, C3, [ 512, False ] ], # 25
|
||||||
|
|
||||||
|
[ -1, 1, Conv, [ 256, 1, 1 ] ],
|
||||||
|
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
||||||
|
[ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3
|
||||||
|
[ -1, 3, C3, [ 256, False ] ], # 29 (P3/8-small)
|
||||||
|
|
||||||
|
[ -1, 1, Conv, [ 256, 3, 2 ] ],
|
||||||
|
[ [ -1, 26 ], 1, Concat, [ 1 ] ], # cat head P4
|
||||||
|
[ -1, 3, C3, [ 512, False ] ], # 32 (P4/16-medium)
|
||||||
|
|
||||||
|
[ -1, 1, Conv, [ 512, 3, 2 ] ],
|
||||||
|
[ [ -1, 22 ], 1, Concat, [ 1 ] ], # cat head P5
|
||||||
|
[ -1, 3, C3, [ 768, False ] ], # 35 (P5/32-large)
|
||||||
|
|
||||||
|
[ -1, 1, Conv, [ 768, 3, 2 ] ],
|
||||||
|
[ [ -1, 18 ], 1, Concat, [ 1 ] ], # cat head P6
|
||||||
|
[ -1, 3, C3, [ 1024, False ] ], # 38 (P6/64-xlarge)
|
||||||
|
|
||||||
|
[ -1, 1, Conv, [ 1024, 3, 2 ] ],
|
||||||
|
[ [ -1, 14 ], 1, Concat, [ 1 ] ], # cat head P7
|
||||||
|
[ -1, 3, C3, [ 1280, False ] ], # 41 (P7/128-xxlarge)
|
||||||
|
|
||||||
|
[ [ 29, 32, 35, 38, 41 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6, P7)
|
||||||
|
]
|
48
models/hub/yolov5-panet.yaml
Executable file
48
models/hub/yolov5-panet.yaml
Executable file
@ -0,0 +1,48 @@
|
|||||||
|
# parameters
|
||||||
|
nc: 80 # number of classes
|
||||||
|
depth_multiple: 1.0 # model depth multiple
|
||||||
|
width_multiple: 1.0 # layer channel multiple
|
||||||
|
|
||||||
|
# anchors
|
||||||
|
anchors:
|
||||||
|
- [10,13, 16,30, 33,23] # P3/8
|
||||||
|
- [30,61, 62,45, 59,119] # P4/16
|
||||||
|
- [116,90, 156,198, 373,326] # P5/32
|
||||||
|
|
||||||
|
# YOLOv5 backbone
|
||||||
|
backbone:
|
||||||
|
# [from, number, module, args]
|
||||||
|
[[-1, 1, Focus, [64, 3]], # 0-P1/2
|
||||||
|
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||||
|
[-1, 3, BottleneckCSP, [128]],
|
||||||
|
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||||
|
[-1, 9, BottleneckCSP, [256]],
|
||||||
|
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||||
|
[-1, 9, BottleneckCSP, [512]],
|
||||||
|
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
||||||
|
[-1, 1, SPP, [1024, [5, 9, 13]]],
|
||||||
|
[-1, 3, BottleneckCSP, [1024, False]], # 9
|
||||||
|
]
|
||||||
|
|
||||||
|
# YOLOv5 PANet head
|
||||||
|
head:
|
||||||
|
[[-1, 1, Conv, [512, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||||
|
[-1, 3, BottleneckCSP, [512, False]], # 13
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||||
|
[-1, 3, BottleneckCSP, [256, False]], # 17 (P3/8-small)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 3, 2]],
|
||||||
|
[[-1, 14], 1, Concat, [1]], # cat head P4
|
||||||
|
[-1, 3, BottleneckCSP, [512, False]], # 20 (P4/16-medium)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [512, 3, 2]],
|
||||||
|
[[-1, 10], 1, Concat, [1]], # cat head P5
|
||||||
|
[-1, 3, BottleneckCSP, [1024, False]], # 23 (P5/32-large)
|
||||||
|
|
||||||
|
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
||||||
|
]
|
60
models/hub/yolov5l6.yaml
Executable file
60
models/hub/yolov5l6.yaml
Executable file
@ -0,0 +1,60 @@
|
|||||||
|
# parameters
|
||||||
|
nc: 80 # number of classes
|
||||||
|
depth_multiple: 1.0 # model depth multiple
|
||||||
|
width_multiple: 1.0 # layer channel multiple
|
||||||
|
|
||||||
|
# anchors
|
||||||
|
anchors:
|
||||||
|
- [ 19,27, 44,40, 38,94 ] # P3/8
|
||||||
|
- [ 96,68, 86,152, 180,137 ] # P4/16
|
||||||
|
- [ 140,301, 303,264, 238,542 ] # P5/32
|
||||||
|
- [ 436,615, 739,380, 925,792 ] # P6/64
|
||||||
|
|
||||||
|
# YOLOv5 backbone
|
||||||
|
backbone:
|
||||||
|
# [from, number, module, args]
|
||||||
|
[ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2
|
||||||
|
[ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4
|
||||||
|
[ -1, 3, C3, [ 128 ] ],
|
||||||
|
[ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8
|
||||||
|
[ -1, 9, C3, [ 256 ] ],
|
||||||
|
[ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16
|
||||||
|
[ -1, 9, C3, [ 512 ] ],
|
||||||
|
[ -1, 1, Conv, [ 768, 3, 2 ] ], # 7-P5/32
|
||||||
|
[ -1, 3, C3, [ 768 ] ],
|
||||||
|
[ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P6/64
|
||||||
|
[ -1, 1, SPP, [ 1024, [ 3, 5, 7 ] ] ],
|
||||||
|
[ -1, 3, C3, [ 1024, False ] ], # 11
|
||||||
|
]
|
||||||
|
|
||||||
|
# YOLOv5 head
|
||||||
|
head:
|
||||||
|
[ [ -1, 1, Conv, [ 768, 1, 1 ] ],
|
||||||
|
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
||||||
|
[ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P5
|
||||||
|
[ -1, 3, C3, [ 768, False ] ], # 15
|
||||||
|
|
||||||
|
[ -1, 1, Conv, [ 512, 1, 1 ] ],
|
||||||
|
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
||||||
|
[ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4
|
||||||
|
[ -1, 3, C3, [ 512, False ] ], # 19
|
||||||
|
|
||||||
|
[ -1, 1, Conv, [ 256, 1, 1 ] ],
|
||||||
|
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
||||||
|
[ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3
|
||||||
|
[ -1, 3, C3, [ 256, False ] ], # 23 (P3/8-small)
|
||||||
|
|
||||||
|
[ -1, 1, Conv, [ 256, 3, 2 ] ],
|
||||||
|
[ [ -1, 20 ], 1, Concat, [ 1 ] ], # cat head P4
|
||||||
|
[ -1, 3, C3, [ 512, False ] ], # 26 (P4/16-medium)
|
||||||
|
|
||||||
|
[ -1, 1, Conv, [ 512, 3, 2 ] ],
|
||||||
|
[ [ -1, 16 ], 1, Concat, [ 1 ] ], # cat head P5
|
||||||
|
[ -1, 3, C3, [ 768, False ] ], # 29 (P5/32-large)
|
||||||
|
|
||||||
|
[ -1, 1, Conv, [ 768, 3, 2 ] ],
|
||||||
|
[ [ -1, 12 ], 1, Concat, [ 1 ] ], # cat head P6
|
||||||
|
[ -1, 3, C3, [ 1024, False ] ], # 32 (P6/64-xlarge)
|
||||||
|
|
||||||
|
[ [ 23, 26, 29, 32 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6)
|
||||||
|
]
|
60
models/hub/yolov5m6.yaml
Executable file
60
models/hub/yolov5m6.yaml
Executable file
@ -0,0 +1,60 @@
|
|||||||
|
# parameters
|
||||||
|
nc: 80 # number of classes
|
||||||
|
depth_multiple: 0.67 # model depth multiple
|
||||||
|
width_multiple: 0.75 # layer channel multiple
|
||||||
|
|
||||||
|
# anchors
|
||||||
|
anchors:
|
||||||
|
- [ 19,27, 44,40, 38,94 ] # P3/8
|
||||||
|
- [ 96,68, 86,152, 180,137 ] # P4/16
|
||||||
|
- [ 140,301, 303,264, 238,542 ] # P5/32
|
||||||
|
- [ 436,615, 739,380, 925,792 ] # P6/64
|
||||||
|
|
||||||
|
# YOLOv5 backbone
|
||||||
|
backbone:
|
||||||
|
# [from, number, module, args]
|
||||||
|
[ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2
|
||||||
|
[ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4
|
||||||
|
[ -1, 3, C3, [ 128 ] ],
|
||||||
|
[ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8
|
||||||
|
[ -1, 9, C3, [ 256 ] ],
|
||||||
|
[ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16
|
||||||
|
[ -1, 9, C3, [ 512 ] ],
|
||||||
|
[ -1, 1, Conv, [ 768, 3, 2 ] ], # 7-P5/32
|
||||||
|
[ -1, 3, C3, [ 768 ] ],
|
||||||
|
[ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P6/64
|
||||||
|
[ -1, 1, SPP, [ 1024, [ 3, 5, 7 ] ] ],
|
||||||
|
[ -1, 3, C3, [ 1024, False ] ], # 11
|
||||||
|
]
|
||||||
|
|
||||||
|
# YOLOv5 head
|
||||||
|
head:
|
||||||
|
[ [ -1, 1, Conv, [ 768, 1, 1 ] ],
|
||||||
|
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
||||||
|
[ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P5
|
||||||
|
[ -1, 3, C3, [ 768, False ] ], # 15
|
||||||
|
|
||||||
|
[ -1, 1, Conv, [ 512, 1, 1 ] ],
|
||||||
|
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
||||||
|
[ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4
|
||||||
|
[ -1, 3, C3, [ 512, False ] ], # 19
|
||||||
|
|
||||||
|
[ -1, 1, Conv, [ 256, 1, 1 ] ],
|
||||||
|
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
||||||
|
[ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3
|
||||||
|
[ -1, 3, C3, [ 256, False ] ], # 23 (P3/8-small)
|
||||||
|
|
||||||
|
[ -1, 1, Conv, [ 256, 3, 2 ] ],
|
||||||
|
[ [ -1, 20 ], 1, Concat, [ 1 ] ], # cat head P4
|
||||||
|
[ -1, 3, C3, [ 512, False ] ], # 26 (P4/16-medium)
|
||||||
|
|
||||||
|
[ -1, 1, Conv, [ 512, 3, 2 ] ],
|
||||||
|
[ [ -1, 16 ], 1, Concat, [ 1 ] ], # cat head P5
|
||||||
|
[ -1, 3, C3, [ 768, False ] ], # 29 (P5/32-large)
|
||||||
|
|
||||||
|
[ -1, 1, Conv, [ 768, 3, 2 ] ],
|
||||||
|
[ [ -1, 12 ], 1, Concat, [ 1 ] ], # cat head P6
|
||||||
|
[ -1, 3, C3, [ 1024, False ] ], # 32 (P6/64-xlarge)
|
||||||
|
|
||||||
|
[ [ 23, 26, 29, 32 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6)
|
||||||
|
]
|
48
models/hub/yolov5s-transformer.yaml
Executable file
48
models/hub/yolov5s-transformer.yaml
Executable file
@ -0,0 +1,48 @@
|
|||||||
|
# parameters
|
||||||
|
nc: 80 # number of classes
|
||||||
|
depth_multiple: 0.33 # model depth multiple
|
||||||
|
width_multiple: 0.50 # layer channel multiple
|
||||||
|
|
||||||
|
# anchors
|
||||||
|
anchors:
|
||||||
|
- [10,13, 16,30, 33,23] # P3/8
|
||||||
|
- [30,61, 62,45, 59,119] # P4/16
|
||||||
|
- [116,90, 156,198, 373,326] # P5/32
|
||||||
|
|
||||||
|
# YOLOv5 backbone
|
||||||
|
backbone:
|
||||||
|
# [from, number, module, args]
|
||||||
|
[[-1, 1, Focus, [64, 3]], # 0-P1/2
|
||||||
|
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||||
|
[-1, 3, C3, [128]],
|
||||||
|
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||||
|
[-1, 9, C3, [256]],
|
||||||
|
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||||
|
[-1, 9, C3, [512]],
|
||||||
|
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
||||||
|
[-1, 1, SPP, [1024, [5, 9, 13]]],
|
||||||
|
[-1, 3, C3TR, [1024, False]], # 9 <-------- C3TR() Transformer module
|
||||||
|
]
|
||||||
|
|
||||||
|
# YOLOv5 head
|
||||||
|
head:
|
||||||
|
[[-1, 1, Conv, [512, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||||
|
[-1, 3, C3, [512, False]], # 13
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||||
|
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 3, 2]],
|
||||||
|
[[-1, 14], 1, Concat, [1]], # cat head P4
|
||||||
|
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [512, 3, 2]],
|
||||||
|
[[-1, 10], 1, Concat, [1]], # cat head P5
|
||||||
|
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
||||||
|
|
||||||
|
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
||||||
|
]
|
60
models/hub/yolov5s6.yaml
Executable file
60
models/hub/yolov5s6.yaml
Executable file
@ -0,0 +1,60 @@
|
|||||||
|
# parameters
|
||||||
|
nc: 80 # number of classes
|
||||||
|
depth_multiple: 0.33 # model depth multiple
|
||||||
|
width_multiple: 0.50 # layer channel multiple
|
||||||
|
|
||||||
|
# anchors
|
||||||
|
anchors:
|
||||||
|
- [ 19,27, 44,40, 38,94 ] # P3/8
|
||||||
|
- [ 96,68, 86,152, 180,137 ] # P4/16
|
||||||
|
- [ 140,301, 303,264, 238,542 ] # P5/32
|
||||||
|
- [ 436,615, 739,380, 925,792 ] # P6/64
|
||||||
|
|
||||||
|
# YOLOv5 backbone
|
||||||
|
backbone:
|
||||||
|
# [from, number, module, args]
|
||||||
|
[ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2
|
||||||
|
[ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4
|
||||||
|
[ -1, 3, C3, [ 128 ] ],
|
||||||
|
[ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8
|
||||||
|
[ -1, 9, C3, [ 256 ] ],
|
||||||
|
[ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16
|
||||||
|
[ -1, 9, C3, [ 512 ] ],
|
||||||
|
[ -1, 1, Conv, [ 768, 3, 2 ] ], # 7-P5/32
|
||||||
|
[ -1, 3, C3, [ 768 ] ],
|
||||||
|
[ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P6/64
|
||||||
|
[ -1, 1, SPP, [ 1024, [ 3, 5, 7 ] ] ],
|
||||||
|
[ -1, 3, C3, [ 1024, False ] ], # 11
|
||||||
|
]
|
||||||
|
|
||||||
|
# YOLOv5 head
|
||||||
|
head:
|
||||||
|
[ [ -1, 1, Conv, [ 768, 1, 1 ] ],
|
||||||
|
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
||||||
|
[ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P5
|
||||||
|
[ -1, 3, C3, [ 768, False ] ], # 15
|
||||||
|
|
||||||
|
[ -1, 1, Conv, [ 512, 1, 1 ] ],
|
||||||
|
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
||||||
|
[ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4
|
||||||
|
[ -1, 3, C3, [ 512, False ] ], # 19
|
||||||
|
|
||||||
|
[ -1, 1, Conv, [ 256, 1, 1 ] ],
|
||||||
|
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
||||||
|
[ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3
|
||||||
|
[ -1, 3, C3, [ 256, False ] ], # 23 (P3/8-small)
|
||||||
|
|
||||||
|
[ -1, 1, Conv, [ 256, 3, 2 ] ],
|
||||||
|
[ [ -1, 20 ], 1, Concat, [ 1 ] ], # cat head P4
|
||||||
|
[ -1, 3, C3, [ 512, False ] ], # 26 (P4/16-medium)
|
||||||
|
|
||||||
|
[ -1, 1, Conv, [ 512, 3, 2 ] ],
|
||||||
|
[ [ -1, 16 ], 1, Concat, [ 1 ] ], # cat head P5
|
||||||
|
[ -1, 3, C3, [ 768, False ] ], # 29 (P5/32-large)
|
||||||
|
|
||||||
|
[ -1, 1, Conv, [ 768, 3, 2 ] ],
|
||||||
|
[ [ -1, 12 ], 1, Concat, [ 1 ] ], # cat head P6
|
||||||
|
[ -1, 3, C3, [ 1024, False ] ], # 32 (P6/64-xlarge)
|
||||||
|
|
||||||
|
[ [ 23, 26, 29, 32 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6)
|
||||||
|
]
|
60
models/hub/yolov5x6.yaml
Executable file
60
models/hub/yolov5x6.yaml
Executable file
@ -0,0 +1,60 @@
|
|||||||
|
# parameters
|
||||||
|
nc: 80 # number of classes
|
||||||
|
depth_multiple: 1.33 # model depth multiple
|
||||||
|
width_multiple: 1.25 # layer channel multiple
|
||||||
|
|
||||||
|
# anchors
|
||||||
|
anchors:
|
||||||
|
- [ 19,27, 44,40, 38,94 ] # P3/8
|
||||||
|
- [ 96,68, 86,152, 180,137 ] # P4/16
|
||||||
|
- [ 140,301, 303,264, 238,542 ] # P5/32
|
||||||
|
- [ 436,615, 739,380, 925,792 ] # P6/64
|
||||||
|
|
||||||
|
# YOLOv5 backbone
|
||||||
|
backbone:
|
||||||
|
# [from, number, module, args]
|
||||||
|
[ [ -1, 1, Focus, [ 64, 3 ] ], # 0-P1/2
|
||||||
|
[ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4
|
||||||
|
[ -1, 3, C3, [ 128 ] ],
|
||||||
|
[ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8
|
||||||
|
[ -1, 9, C3, [ 256 ] ],
|
||||||
|
[ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16
|
||||||
|
[ -1, 9, C3, [ 512 ] ],
|
||||||
|
[ -1, 1, Conv, [ 768, 3, 2 ] ], # 7-P5/32
|
||||||
|
[ -1, 3, C3, [ 768 ] ],
|
||||||
|
[ -1, 1, Conv, [ 1024, 3, 2 ] ], # 9-P6/64
|
||||||
|
[ -1, 1, SPP, [ 1024, [ 3, 5, 7 ] ] ],
|
||||||
|
[ -1, 3, C3, [ 1024, False ] ], # 11
|
||||||
|
]
|
||||||
|
|
||||||
|
# YOLOv5 head
|
||||||
|
head:
|
||||||
|
[ [ -1, 1, Conv, [ 768, 1, 1 ] ],
|
||||||
|
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
||||||
|
[ [ -1, 8 ], 1, Concat, [ 1 ] ], # cat backbone P5
|
||||||
|
[ -1, 3, C3, [ 768, False ] ], # 15
|
||||||
|
|
||||||
|
[ -1, 1, Conv, [ 512, 1, 1 ] ],
|
||||||
|
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
||||||
|
[ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4
|
||||||
|
[ -1, 3, C3, [ 512, False ] ], # 19
|
||||||
|
|
||||||
|
[ -1, 1, Conv, [ 256, 1, 1 ] ],
|
||||||
|
[ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
|
||||||
|
[ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3
|
||||||
|
[ -1, 3, C3, [ 256, False ] ], # 23 (P3/8-small)
|
||||||
|
|
||||||
|
[ -1, 1, Conv, [ 256, 3, 2 ] ],
|
||||||
|
[ [ -1, 20 ], 1, Concat, [ 1 ] ], # cat head P4
|
||||||
|
[ -1, 3, C3, [ 512, False ] ], # 26 (P4/16-medium)
|
||||||
|
|
||||||
|
[ -1, 1, Conv, [ 512, 3, 2 ] ],
|
||||||
|
[ [ -1, 16 ], 1, Concat, [ 1 ] ], # cat head P5
|
||||||
|
[ -1, 3, C3, [ 768, False ] ], # 29 (P5/32-large)
|
||||||
|
|
||||||
|
[ -1, 1, Conv, [ 768, 3, 2 ] ],
|
||||||
|
[ [ -1, 12 ], 1, Concat, [ 1 ] ], # cat head P6
|
||||||
|
[ -1, 3, C3, [ 1024, False ] ], # 32 (P6/64-xlarge)
|
||||||
|
|
||||||
|
[ [ 23, 26, 29, 32 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4, P5, P6)
|
||||||
|
]
|
277
models/yolo.py
Executable file
277
models/yolo.py
Executable file
@ -0,0 +1,277 @@
|
|||||||
|
# YOLOv5 YOLO-specific modules
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import sys
|
||||||
|
from copy import deepcopy
|
||||||
|
|
||||||
|
sys.path.append('./') # to run '$ python *.py' files in subdirectories
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
from models.common import *
|
||||||
|
from models.experimental import *
|
||||||
|
from utils.autoanchor import check_anchor_order
|
||||||
|
from utils.general import make_divisible, check_file, set_logging
|
||||||
|
from utils.torch_utils import time_synchronized, fuse_conv_and_bn, model_info, scale_img, initialize_weights, \
|
||||||
|
select_device, copy_attr
|
||||||
|
|
||||||
|
try:
|
||||||
|
import thop # for FLOPS computation
|
||||||
|
except ImportError:
|
||||||
|
thop = None
|
||||||
|
|
||||||
|
|
||||||
|
class Detect(nn.Module):
|
||||||
|
stride = None # strides computed during build
|
||||||
|
export = False # onnx export
|
||||||
|
|
||||||
|
def __init__(self, nc=80, anchors=(), ch=()): # detection layer
|
||||||
|
super(Detect, self).__init__()
|
||||||
|
self.nc = nc # number of classes
|
||||||
|
self.no = nc + 5 # number of outputs per anchor
|
||||||
|
self.nl = len(anchors) # number of detection layers
|
||||||
|
self.na = len(anchors[0]) // 2 # number of anchors
|
||||||
|
self.grid = [torch.zeros(1)] * self.nl # init grid
|
||||||
|
a = torch.tensor(anchors).float().view(self.nl, -1, 2)
|
||||||
|
self.register_buffer('anchors', a) # shape(nl,na,2)
|
||||||
|
self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
|
||||||
|
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
# x = x.copy() # for profiling
|
||||||
|
z = [] # inference output
|
||||||
|
self.training |= self.export
|
||||||
|
for i in range(self.nl):
|
||||||
|
x[i] = self.m[i](x[i]) # conv
|
||||||
|
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
|
||||||
|
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
|
||||||
|
|
||||||
|
if not self.training: # inference
|
||||||
|
if self.grid[i].shape[2:4] != x[i].shape[2:4]:
|
||||||
|
self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
|
||||||
|
|
||||||
|
y = x[i].sigmoid()
|
||||||
|
y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i]) * self.stride[i] # xy
|
||||||
|
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
|
||||||
|
z.append(y.view(bs, -1, self.no))
|
||||||
|
|
||||||
|
return x if self.training else (torch.cat(z, 1), x)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def _make_grid(nx=20, ny=20):
|
||||||
|
yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
|
||||||
|
return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
|
||||||
|
|
||||||
|
|
||||||
|
class Model(nn.Module):
|
||||||
|
def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None): # model, input channels, number of classes
|
||||||
|
super(Model, self).__init__()
|
||||||
|
if isinstance(cfg, dict):
|
||||||
|
self.yaml = cfg # model dict
|
||||||
|
else: # is *.yaml
|
||||||
|
import yaml # for torch hub
|
||||||
|
self.yaml_file = Path(cfg).name
|
||||||
|
with open(cfg) as f:
|
||||||
|
self.yaml = yaml.load(f, Loader=yaml.SafeLoader) # model dict
|
||||||
|
|
||||||
|
# Define model
|
||||||
|
ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels
|
||||||
|
if nc and nc != self.yaml['nc']:
|
||||||
|
logger.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
|
||||||
|
self.yaml['nc'] = nc # override yaml value
|
||||||
|
if anchors:
|
||||||
|
logger.info(f'Overriding model.yaml anchors with anchors={anchors}')
|
||||||
|
self.yaml['anchors'] = round(anchors) # override yaml value
|
||||||
|
self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist
|
||||||
|
self.names = [str(i) for i in range(self.yaml['nc'])] # default names
|
||||||
|
# print([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))])
|
||||||
|
|
||||||
|
# Build strides, anchors
|
||||||
|
m = self.model[-1] # Detect()
|
||||||
|
if isinstance(m, Detect):
|
||||||
|
s = 256 # 2x min stride
|
||||||
|
m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
|
||||||
|
m.anchors /= m.stride.view(-1, 1, 1)
|
||||||
|
check_anchor_order(m)
|
||||||
|
self.stride = m.stride
|
||||||
|
self._initialize_biases() # only run once
|
||||||
|
# print('Strides: %s' % m.stride.tolist())
|
||||||
|
|
||||||
|
# Init weights, biases
|
||||||
|
initialize_weights(self)
|
||||||
|
self.info()
|
||||||
|
logger.info('')
|
||||||
|
|
||||||
|
def forward(self, x, augment=False, profile=False):
|
||||||
|
if augment:
|
||||||
|
img_size = x.shape[-2:] # height, width
|
||||||
|
s = [1, 0.83, 0.67] # scales
|
||||||
|
f = [None, 3, None] # flips (2-ud, 3-lr)
|
||||||
|
y = [] # outputs
|
||||||
|
for si, fi in zip(s, f):
|
||||||
|
xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
|
||||||
|
yi = self.forward_once(xi)[0] # forward
|
||||||
|
# cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save
|
||||||
|
yi[..., :4] /= si # de-scale
|
||||||
|
if fi == 2:
|
||||||
|
yi[..., 1] = img_size[0] - yi[..., 1] # de-flip ud
|
||||||
|
elif fi == 3:
|
||||||
|
yi[..., 0] = img_size[1] - yi[..., 0] # de-flip lr
|
||||||
|
y.append(yi)
|
||||||
|
return torch.cat(y, 1), None # augmented inference, train
|
||||||
|
else:
|
||||||
|
return self.forward_once(x, profile) # single-scale inference, train
|
||||||
|
|
||||||
|
def forward_once(self, x, profile=False):
|
||||||
|
y, dt = [], [] # outputs
|
||||||
|
for m in self.model:
|
||||||
|
if m.f != -1: # if not from previous layer
|
||||||
|
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
|
||||||
|
|
||||||
|
if profile:
|
||||||
|
o = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPS
|
||||||
|
t = time_synchronized()
|
||||||
|
for _ in range(10):
|
||||||
|
_ = m(x)
|
||||||
|
dt.append((time_synchronized() - t) * 100)
|
||||||
|
print('%10.1f%10.0f%10.1fms %-40s' % (o, m.np, dt[-1], m.type))
|
||||||
|
|
||||||
|
x = m(x) # run
|
||||||
|
y.append(x if m.i in self.save else None) # save output
|
||||||
|
|
||||||
|
if profile:
|
||||||
|
print('%.1fms total' % sum(dt))
|
||||||
|
return x
|
||||||
|
|
||||||
|
def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
|
||||||
|
# https://arxiv.org/abs/1708.02002 section 3.3
|
||||||
|
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
|
||||||
|
m = self.model[-1] # Detect() module
|
||||||
|
for mi, s in zip(m.m, m.stride): # from
|
||||||
|
b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
|
||||||
|
b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
|
||||||
|
b.data[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
|
||||||
|
mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
|
||||||
|
|
||||||
|
def _print_biases(self):
|
||||||
|
m = self.model[-1] # Detect() module
|
||||||
|
for mi in m.m: # from
|
||||||
|
b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85)
|
||||||
|
print(('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))
|
||||||
|
|
||||||
|
# def _print_weights(self):
|
||||||
|
# for m in self.model.modules():
|
||||||
|
# if type(m) is Bottleneck:
|
||||||
|
# print('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights
|
||||||
|
|
||||||
|
def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
|
||||||
|
print('Fusing layers... ')
|
||||||
|
for m in self.model.modules():
|
||||||
|
if type(m) is Conv and hasattr(m, 'bn'):
|
||||||
|
m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
|
||||||
|
delattr(m, 'bn') # remove batchnorm
|
||||||
|
m.forward = m.fuseforward # update forward
|
||||||
|
self.info()
|
||||||
|
return self
|
||||||
|
|
||||||
|
def nms(self, mode=True): # add or remove NMS module
|
||||||
|
present = type(self.model[-1]) is NMS # last layer is NMS
|
||||||
|
if mode and not present:
|
||||||
|
print('Adding NMS... ')
|
||||||
|
m = NMS() # module
|
||||||
|
m.f = -1 # from
|
||||||
|
m.i = self.model[-1].i + 1 # index
|
||||||
|
self.model.add_module(name='%s' % m.i, module=m) # add
|
||||||
|
self.eval()
|
||||||
|
elif not mode and present:
|
||||||
|
print('Removing NMS... ')
|
||||||
|
self.model = self.model[:-1] # remove
|
||||||
|
return self
|
||||||
|
|
||||||
|
def autoshape(self): # add autoShape module
|
||||||
|
print('Adding autoShape... ')
|
||||||
|
m = autoShape(self) # wrap model
|
||||||
|
copy_attr(m, self, include=('yaml', 'nc', 'hyp', 'names', 'stride'), exclude=()) # copy attributes
|
||||||
|
return m
|
||||||
|
|
||||||
|
def info(self, verbose=False, img_size=640): # print model information
|
||||||
|
model_info(self, verbose, img_size)
|
||||||
|
|
||||||
|
|
||||||
|
def parse_model(d, ch): # model_dict, input_channels(3)
|
||||||
|
logger.info('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments'))
|
||||||
|
anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
|
||||||
|
na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
|
||||||
|
no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
|
||||||
|
|
||||||
|
layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
|
||||||
|
for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
|
||||||
|
m = eval(m) if isinstance(m, str) else m # eval strings
|
||||||
|
for j, a in enumerate(args):
|
||||||
|
try:
|
||||||
|
args[j] = eval(a) if isinstance(a, str) else a # eval strings
|
||||||
|
except:
|
||||||
|
pass
|
||||||
|
|
||||||
|
n = max(round(n * gd), 1) if n > 1 else n # depth gain
|
||||||
|
if m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP,
|
||||||
|
C3, C3TR]:
|
||||||
|
c1, c2 = ch[f], args[0]
|
||||||
|
if c2 != no: # if not output
|
||||||
|
c2 = make_divisible(c2 * gw, 8)
|
||||||
|
|
||||||
|
args = [c1, c2, *args[1:]]
|
||||||
|
if m in [BottleneckCSP, C3, C3TR]:
|
||||||
|
args.insert(2, n) # number of repeats
|
||||||
|
n = 1
|
||||||
|
elif m is nn.BatchNorm2d:
|
||||||
|
args = [ch[f]]
|
||||||
|
elif m is Concat:
|
||||||
|
c2 = sum([ch[x] for x in f])
|
||||||
|
elif m is Detect:
|
||||||
|
args.append([ch[x] for x in f])
|
||||||
|
if isinstance(args[1], int): # number of anchors
|
||||||
|
args[1] = [list(range(args[1] * 2))] * len(f)
|
||||||
|
elif m is Contract:
|
||||||
|
c2 = ch[f] * args[0] ** 2
|
||||||
|
elif m is Expand:
|
||||||
|
c2 = ch[f] // args[0] ** 2
|
||||||
|
else:
|
||||||
|
c2 = ch[f]
|
||||||
|
|
||||||
|
m_ = nn.Sequential(*[m(*args) for _ in range(n)]) if n > 1 else m(*args) # module
|
||||||
|
t = str(m)[8:-2].replace('__main__.', '') # module type
|
||||||
|
np = sum([x.numel() for x in m_.parameters()]) # number params
|
||||||
|
m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
|
||||||
|
logger.info('%3s%18s%3s%10.0f %-40s%-30s' % (i, f, n, np, t, args)) # print
|
||||||
|
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
|
||||||
|
layers.append(m_)
|
||||||
|
if i == 0:
|
||||||
|
ch = []
|
||||||
|
ch.append(c2)
|
||||||
|
return nn.Sequential(*layers), sorted(save)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='model.yaml')
|
||||||
|
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
||||||
|
opt = parser.parse_args()
|
||||||
|
opt.cfg = check_file(opt.cfg) # check file
|
||||||
|
set_logging()
|
||||||
|
device = select_device(opt.device)
|
||||||
|
|
||||||
|
# Create model
|
||||||
|
model = Model(opt.cfg).to(device)
|
||||||
|
model.train()
|
||||||
|
|
||||||
|
# Profile
|
||||||
|
# img = torch.rand(8 if torch.cuda.is_available() else 1, 3, 640, 640).to(device)
|
||||||
|
# y = model(img, profile=True)
|
||||||
|
|
||||||
|
# Tensorboard
|
||||||
|
# from torch.utils.tensorboard import SummaryWriter
|
||||||
|
# tb_writer = SummaryWriter()
|
||||||
|
# print("Run 'tensorboard --logdir=models/runs' to view tensorboard at http://localhost:6006/")
|
||||||
|
# tb_writer.add_graph(model.model, img) # add model to tensorboard
|
||||||
|
# tb_writer.add_image('test', img[0], dataformats='CWH') # add model to tensorboard
|
51
models/yolov5l.yaml
Executable file
51
models/yolov5l.yaml
Executable file
@ -0,0 +1,51 @@
|
|||||||
|
# parameters
|
||||||
|
nc: 13 # number of classes
|
||||||
|
depth_multiple: 1.0 # model depth multiple
|
||||||
|
width_multiple: 1.0 # layer channel multiple
|
||||||
|
|
||||||
|
# anchors
|
||||||
|
anchors:
|
||||||
|
#- [10,13, 16,30, 33,23] # P3/8
|
||||||
|
#- [30,61, 62,45, 59,119] # P4/16
|
||||||
|
#- [116,90, 156,198, 373,326] # P5/32
|
||||||
|
- [87,51, 80 ,84, 142,66] # P3/8
|
||||||
|
- [98,156, 139,112, 238,72] # P4/16
|
||||||
|
- [238,120, 177,180, 277,198] # P5/32
|
||||||
|
|
||||||
|
# YOLOv5 backbone
|
||||||
|
backbone:
|
||||||
|
# [from, number, module, args]
|
||||||
|
[[-1, 1, Focus, [64, 3]], # 0-P1/2
|
||||||
|
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||||
|
[-1, 3, C3, [128]],
|
||||||
|
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||||
|
[-1, 9, C3, [256]],
|
||||||
|
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||||
|
[-1, 9, C3, [512]],
|
||||||
|
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
||||||
|
[-1, 1, SPP, [1024, [5, 9, 13]]],
|
||||||
|
[-1, 3, C3, [1024, False]], # 9
|
||||||
|
]
|
||||||
|
|
||||||
|
# YOLOv5 head
|
||||||
|
head:
|
||||||
|
[[-1, 1, Conv, [512, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||||
|
[-1, 3, C3, [512, False]], # 13
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||||
|
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 3, 2]],
|
||||||
|
[[-1, 14], 1, Concat, [1]], # cat head P4
|
||||||
|
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [512, 3, 2]],
|
||||||
|
[[-1, 10], 1, Concat, [1]], # cat head P5
|
||||||
|
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
||||||
|
|
||||||
|
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
||||||
|
]
|
51
models/yolov5m.yaml
Executable file
51
models/yolov5m.yaml
Executable file
@ -0,0 +1,51 @@
|
|||||||
|
# parameters
|
||||||
|
nc: 13 #1054 # number of classes
|
||||||
|
depth_multiple: 0.67 # model depth multiple
|
||||||
|
width_multiple: 0.75 # layer channel multiple
|
||||||
|
|
||||||
|
# anchors
|
||||||
|
anchors:
|
||||||
|
#- [10,13, 16,30, 33,23] # P3/8
|
||||||
|
#- [30,61, 62,45, 59,119] # P4/16
|
||||||
|
#- [116,90, 156,198, 373,326] # P5/32
|
||||||
|
- [87,51, 80 ,84, 142,66] # P3/8
|
||||||
|
- [98,156, 139,112, 238,72] # P4/16
|
||||||
|
- [238,120, 177,180, 277,198] # P5/32
|
||||||
|
|
||||||
|
# YOLOv5 backbone
|
||||||
|
backbone:
|
||||||
|
# [from, number, module, args]
|
||||||
|
[[-1, 1, Focus, [64, 3]], # 0-P1/2
|
||||||
|
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||||
|
[-1, 3, C3, [128]],
|
||||||
|
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||||
|
[-1, 9, C3, [256]],
|
||||||
|
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||||
|
[-1, 9, C3, [512]],
|
||||||
|
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
||||||
|
[-1, 1, SPP, [1024, [5, 9, 13]]],
|
||||||
|
[-1, 3, C3, [1024, False]], # 9
|
||||||
|
]
|
||||||
|
|
||||||
|
# YOLOv5 head
|
||||||
|
head:
|
||||||
|
[[-1, 1, Conv, [512, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||||
|
[-1, 3, C3, [512, False]], # 13
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||||
|
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 3, 2]],
|
||||||
|
[[-1, 14], 1, Concat, [1]], # cat head P4
|
||||||
|
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [512, 3, 2]],
|
||||||
|
[[-1, 10], 1, Concat, [1]], # cat head P5
|
||||||
|
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
||||||
|
|
||||||
|
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
||||||
|
]
|
52
models/yolov5s.yaml
Executable file
52
models/yolov5s.yaml
Executable file
@ -0,0 +1,52 @@
|
|||||||
|
# parameters
|
||||||
|
#nc: 80 # number of classes
|
||||||
|
nc: 13 # number of classes
|
||||||
|
depth_multiple: 0.33 # model depth multiple
|
||||||
|
width_multiple: 0.50 # layer channel multiple
|
||||||
|
|
||||||
|
# anchors
|
||||||
|
anchors:
|
||||||
|
#- [10,13, 16,30, 33,23] # P3/8
|
||||||
|
#- [30,61, 62,45, 59,119] # P4/16
|
||||||
|
#- [116,90, 156,198, 373,326] # P5/32
|
||||||
|
- [87,51, 80 ,84, 142,66] # P3/8
|
||||||
|
- [98,156, 139,112, 238,72] # P4/16
|
||||||
|
- [238,120, 177,180, 277,198] # P5/32
|
||||||
|
|
||||||
|
# YOLOv5 backbone
|
||||||
|
backbone:
|
||||||
|
# [from, number, module, args]
|
||||||
|
[[-1, 1, Focus, [64, 3]], # 0-P1/2
|
||||||
|
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||||
|
[-1, 3, C3, [128]],
|
||||||
|
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||||
|
[-1, 9, C3, [256]],
|
||||||
|
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||||
|
[-1, 9, C3, [512]],
|
||||||
|
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
||||||
|
[-1, 1, SPP, [1024, [5, 9, 13]]],
|
||||||
|
[-1, 3, C3, [1024, False]], # 9
|
||||||
|
]
|
||||||
|
|
||||||
|
# YOLOv5 head
|
||||||
|
head:
|
||||||
|
[[-1, 1, Conv, [512, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||||
|
[-1, 3, C3, [512, False]], # 13
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||||
|
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 3, 2]],
|
||||||
|
[[-1, 14], 1, Concat, [1]], # cat head P4
|
||||||
|
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [512, 3, 2]],
|
||||||
|
[[-1, 10], 1, Concat, [1]], # cat head P5
|
||||||
|
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
||||||
|
|
||||||
|
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
||||||
|
]
|
48
models/yolov5x.yaml
Executable file
48
models/yolov5x.yaml
Executable file
@ -0,0 +1,48 @@
|
|||||||
|
# parameters
|
||||||
|
nc: 80 # number of classes
|
||||||
|
depth_multiple: 1.33 # model depth multiple
|
||||||
|
width_multiple: 1.25 # layer channel multiple
|
||||||
|
|
||||||
|
# anchors
|
||||||
|
anchors:
|
||||||
|
- [10,13, 16,30, 33,23] # P3/8
|
||||||
|
- [30,61, 62,45, 59,119] # P4/16
|
||||||
|
- [116,90, 156,198, 373,326] # P5/32
|
||||||
|
|
||||||
|
# YOLOv5 backbone
|
||||||
|
backbone:
|
||||||
|
# [from, number, module, args]
|
||||||
|
[[-1, 1, Focus, [64, 3]], # 0-P1/2
|
||||||
|
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
|
||||||
|
[-1, 3, C3, [128]],
|
||||||
|
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
|
||||||
|
[-1, 9, C3, [256]],
|
||||||
|
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
|
||||||
|
[-1, 9, C3, [512]],
|
||||||
|
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
|
||||||
|
[-1, 1, SPP, [1024, [5, 9, 13]]],
|
||||||
|
[-1, 3, C3, [1024, False]], # 9
|
||||||
|
]
|
||||||
|
|
||||||
|
# YOLOv5 head
|
||||||
|
head:
|
||||||
|
[[-1, 1, Conv, [512, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 6], 1, Concat, [1]], # cat backbone P4
|
||||||
|
[-1, 3, C3, [512, False]], # 13
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 1, 1]],
|
||||||
|
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
|
||||||
|
[[-1, 4], 1, Concat, [1]], # cat backbone P3
|
||||||
|
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [256, 3, 2]],
|
||||||
|
[[-1, 14], 1, Concat, [1]], # cat head P4
|
||||||
|
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
|
||||||
|
|
||||||
|
[-1, 1, Conv, [512, 3, 2]],
|
||||||
|
[[-1, 10], 1, Concat, [1]], # cat head P5
|
||||||
|
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
|
||||||
|
|
||||||
|
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
|
||||||
|
]
|
80
requirements.txt
Executable file
80
requirements.txt
Executable file
@ -0,0 +1,80 @@
|
|||||||
|
absl-py==1.0.0
|
||||||
|
Bottleneck==1.3.2
|
||||||
|
brotlipy==0.7.0
|
||||||
|
cachetools==5.0.0
|
||||||
|
certifi==2021.10.8
|
||||||
|
cffi @ file:///tmp/build/80754af9/cffi_1625807838443/work
|
||||||
|
charset-normalizer @ file:///tmp/build/80754af9/charset-normalizer_1630003229654/work
|
||||||
|
click==8.0.3
|
||||||
|
contextlib2==21.6.0
|
||||||
|
cryptography @ file:///tmp/build/80754af9/cryptography_1635366571107/work
|
||||||
|
cycler @ file:///tmp/build/80754af9/cycler_1637851556182/work
|
||||||
|
docopt==0.6.2
|
||||||
|
esdk-obs-python==3.21.8
|
||||||
|
faiss==1.7.1
|
||||||
|
Flask @ file:///tmp/build/80754af9/flask_1634118196080/work
|
||||||
|
fonttools==4.25.0
|
||||||
|
gevent @ file:///tmp/build/80754af9/gevent_1628273677693/work
|
||||||
|
google-auth==2.6.0
|
||||||
|
google-auth-oauthlib==0.4.6
|
||||||
|
greenlet @ file:///tmp/build/80754af9/greenlet_1628887725296/work
|
||||||
|
grpcio==1.44.0
|
||||||
|
gunicorn==20.1.0
|
||||||
|
h5py @ file:///tmp/build/80754af9/h5py_1637138879700/work
|
||||||
|
idna @ file:///tmp/build/80754af9/idna_1637925883363/work
|
||||||
|
importlib-metadata==4.11.3
|
||||||
|
itsdangerous @ file:///tmp/build/80754af9/itsdangerous_1621432558163/work
|
||||||
|
Jinja2 @ file:///tmp/build/80754af9/jinja2_1635780242639/work
|
||||||
|
kiwisolver @ file:///tmp/build/80754af9/kiwisolver_1612282420641/work
|
||||||
|
Markdown==3.3.6
|
||||||
|
MarkupSafe @ file:///tmp/build/80754af9/markupsafe_1621528148836/work
|
||||||
|
matplotlib @ file:///tmp/build/80754af9/matplotlib-suite_1638289681807/work
|
||||||
|
mkl-fft==1.3.1
|
||||||
|
mkl-random @ file:///tmp/build/80754af9/mkl_random_1626186064646/work
|
||||||
|
mkl-service==2.4.0
|
||||||
|
ml-collections==0.1.0
|
||||||
|
munkres==1.1.4
|
||||||
|
numexpr @ file:///tmp/build/80754af9/numexpr_1618856167419/work
|
||||||
|
numpy @ file:///tmp/build/80754af9/numpy_and_numpy_base_1634095647912/work
|
||||||
|
oauthlib==3.2.0
|
||||||
|
olefile @ file:///Users/ktietz/demo/mc3/conda-bld/olefile_1629805411829/work
|
||||||
|
opencv-python==4.5.4.60
|
||||||
|
packaging @ file:///tmp/build/80754af9/packaging_1637314298585/work
|
||||||
|
pandas==1.3.4
|
||||||
|
Pillow==8.4.0
|
||||||
|
pipreqs==0.4.11
|
||||||
|
protobuf==3.19.4
|
||||||
|
pyasn1==0.4.8
|
||||||
|
pyasn1-modules==0.2.8
|
||||||
|
pycparser @ file:///tmp/build/80754af9/pycparser_1636541352034/work
|
||||||
|
pycryptodome==3.10.1
|
||||||
|
pyOpenSSL @ file:///tmp/build/80754af9/pyopenssl_1635333100036/work
|
||||||
|
pyparsing @ file:///tmp/build/80754af9/pyparsing_1635766073266/work
|
||||||
|
PySocks @ file:///tmp/build/80754af9/pysocks_1605305779399/work
|
||||||
|
python-dateutil @ file:///tmp/build/80754af9/python-dateutil_1626374649649/work
|
||||||
|
pytz==2021.3
|
||||||
|
PyYAML==6.0
|
||||||
|
requests @ file:///tmp/build/80754af9/requests_1629994808627/work
|
||||||
|
requests-oauthlib==1.3.1
|
||||||
|
rsa==4.8
|
||||||
|
scipy @ file:///tmp/build/80754af9/scipy_1630606796110/work
|
||||||
|
seaborn @ file:///tmp/build/80754af9/seaborn_1629307859561/work
|
||||||
|
sip==4.19.13
|
||||||
|
six @ file:///tmp/build/80754af9/six_1623709665295/work
|
||||||
|
supervisor==4.2.2
|
||||||
|
tensorboard==2.8.0
|
||||||
|
tensorboard-data-server==0.6.1
|
||||||
|
tensorboard-plugin-wit==1.8.1
|
||||||
|
torch==1.8.0
|
||||||
|
torchaudio==0.8.0a0+a751e1d
|
||||||
|
torchvision==0.9.0
|
||||||
|
tornado @ file:///tmp/build/80754af9/tornado_1606942300299/work
|
||||||
|
tqdm @ file:///tmp/build/80754af9/tqdm_1635330843403/work
|
||||||
|
typing-extensions @ file:///tmp/build/80754af9/typing_extensions_1631814937681/work
|
||||||
|
urllib3==1.26.7
|
||||||
|
Werkzeug @ file:///tmp/build/80754af9/werkzeug_1635505089296/work
|
||||||
|
yacs @ file:///tmp/build/80754af9/yacs_1634047592950/work
|
||||||
|
yarg==0.1.9
|
||||||
|
zipp==3.7.0
|
||||||
|
zope.event==4.5.0
|
||||||
|
zope.interface @ file:///tmp/build/80754af9/zope.interface_1625035545636/work
|
47
spilt_train_val.py
Normal file
47
spilt_train_val.py
Normal file
@ -0,0 +1,47 @@
|
|||||||
|
|
||||||
|
import os
|
||||||
|
import random
|
||||||
|
import argparse
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
#xml文件的地址,根据自己的数据进行修改 xml一般存放在Annotations下
|
||||||
|
parser.add_argument('--xml_path', default='/home/nxy/nxy_project/python_project/Data/paper_data/Annotations', type=str, help='input xml label path')
|
||||||
|
#数据集的划分,地址选择自己数据下的ImageSets/Main
|
||||||
|
parser.add_argument('--txt_path', default='/home/nxy/nxy_project/python_project/Data/paper_data/ImageSets/Main', type=str, help='output txt label path')
|
||||||
|
opt = parser.parse_args()
|
||||||
|
|
||||||
|
trainval_percent = 1.0
|
||||||
|
train_percent = 0.8
|
||||||
|
xmlfilepath = opt.xml_path
|
||||||
|
txtsavepath = opt.txt_path
|
||||||
|
total_xml = os.listdir(xmlfilepath)
|
||||||
|
if not os.path.exists(txtsavepath):
|
||||||
|
os.makedirs(txtsavepath)
|
||||||
|
|
||||||
|
num = len(total_xml)
|
||||||
|
list_index = range(num)
|
||||||
|
tv = int(num * trainval_percent)
|
||||||
|
tr = int(tv * train_percent)
|
||||||
|
trainval = random.sample(list_index, tv)
|
||||||
|
train = random.sample(trainval, tr)
|
||||||
|
|
||||||
|
file_trainval = open(txtsavepath + '/trainval.txt', 'w')
|
||||||
|
file_test = open(txtsavepath + '/test.txt', 'w')
|
||||||
|
file_train = open(txtsavepath + '/train.txt', 'w')
|
||||||
|
file_val = open(txtsavepath + '/val.txt', 'w')
|
||||||
|
|
||||||
|
for i in list_index:
|
||||||
|
name = total_xml[i][:-4] + '\n'
|
||||||
|
if i in trainval:
|
||||||
|
file_trainval.write(name)
|
||||||
|
if i in train:
|
||||||
|
file_train.write(name)
|
||||||
|
else:
|
||||||
|
file_val.write(name)
|
||||||
|
else:
|
||||||
|
file_test.write(name)
|
||||||
|
|
||||||
|
file_trainval.close()
|
||||||
|
file_train.close()
|
||||||
|
file_val.close()
|
||||||
|
file_test.close()
|
345
test.py
Executable file
345
test.py
Executable file
@ -0,0 +1,345 @@
|
|||||||
|
import argparse
|
||||||
|
import json
|
||||||
|
import os
|
||||||
|
from pathlib import Path
|
||||||
|
from threading import Thread
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
import yaml
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
from models.experimental import attempt_load
|
||||||
|
from utils.datasets import create_dataloader
|
||||||
|
from utils.general import coco80_to_coco91_class, check_dataset, check_file, check_img_size, check_requirements, \
|
||||||
|
box_iou, non_max_suppression, scale_coords, xyxy2xywh, xywh2xyxy, set_logging, increment_path, colorstr
|
||||||
|
from utils.metrics import ap_per_class, ConfusionMatrix
|
||||||
|
from utils.plots import plot_images, output_to_target, plot_study_txt
|
||||||
|
from utils.torch_utils import select_device, time_synchronized
|
||||||
|
|
||||||
|
|
||||||
|
def test(data,
|
||||||
|
weights=None,
|
||||||
|
batch_size=32,
|
||||||
|
imgsz=640,
|
||||||
|
conf_thres=0.001,
|
||||||
|
iou_thres=0.6, # for NMS
|
||||||
|
save_json=False,
|
||||||
|
single_cls=False,
|
||||||
|
augment=False,
|
||||||
|
verbose=False,
|
||||||
|
model=None,
|
||||||
|
dataloader=None,
|
||||||
|
save_dir=Path(''), # for saving images
|
||||||
|
save_txt=False, # for auto-labelling
|
||||||
|
save_hybrid=False, # for hybrid auto-labelling
|
||||||
|
save_conf=False, # save auto-label confidences
|
||||||
|
plots=True,
|
||||||
|
wandb_logger=None,
|
||||||
|
compute_loss=None,
|
||||||
|
half_precision=True,
|
||||||
|
is_coco=False):
|
||||||
|
# Initialize/load model and set device
|
||||||
|
training = model is not None
|
||||||
|
if training: # called by train.py
|
||||||
|
device = next(model.parameters()).device # get model device
|
||||||
|
|
||||||
|
else: # called directly
|
||||||
|
set_logging()
|
||||||
|
device = select_device(opt.device, batch_size=batch_size)
|
||||||
|
|
||||||
|
# Directories
|
||||||
|
save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
|
||||||
|
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
|
||||||
|
|
||||||
|
# Load model
|
||||||
|
model = attempt_load(weights, map_location=device) # load FP32 model
|
||||||
|
gs = max(int(model.stride.max()), 32) # grid size (max stride)
|
||||||
|
imgsz = check_img_size(imgsz, s=gs) # check img_size
|
||||||
|
|
||||||
|
# Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99
|
||||||
|
# if device.type != 'cpu' and torch.cuda.device_count() > 1:
|
||||||
|
# model = nn.DataParallel(model)
|
||||||
|
|
||||||
|
# Half
|
||||||
|
half = device.type != 'cpu' and half_precision # half precision only supported on CUDA
|
||||||
|
if half:
|
||||||
|
model.half()
|
||||||
|
|
||||||
|
# Configure
|
||||||
|
model.eval()
|
||||||
|
if isinstance(data, str):
|
||||||
|
is_coco = data.endswith('coco.yaml')
|
||||||
|
with open(data) as f:
|
||||||
|
data = yaml.load(f, Loader=yaml.SafeLoader)
|
||||||
|
check_dataset(data) # check
|
||||||
|
nc = 1 if single_cls else int(data['nc']) # number of classes
|
||||||
|
iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for mAP@0.5:0.95
|
||||||
|
niou = iouv.numel()
|
||||||
|
|
||||||
|
# Logging
|
||||||
|
log_imgs = 0
|
||||||
|
if wandb_logger and wandb_logger.wandb:
|
||||||
|
log_imgs = min(wandb_logger.log_imgs, 100)
|
||||||
|
# Dataloader
|
||||||
|
if not training:
|
||||||
|
if device.type != 'cpu':
|
||||||
|
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
|
||||||
|
task = opt.task if opt.task in ('train', 'val', 'test') else 'val' # path to train/val/test images
|
||||||
|
dataloader = create_dataloader(data[task], imgsz, batch_size, gs, opt, pad=0.5, rect=True,
|
||||||
|
prefix=colorstr(f'{task}: '))[0]
|
||||||
|
|
||||||
|
seen = 0
|
||||||
|
confusion_matrix = ConfusionMatrix(nc=nc)
|
||||||
|
names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)}
|
||||||
|
coco91class = coco80_to_coco91_class()
|
||||||
|
s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
|
||||||
|
p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0.
|
||||||
|
loss = torch.zeros(3, device=device)
|
||||||
|
jdict, stats, ap, ap_class, wandb_images = [], [], [], [], []
|
||||||
|
for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
|
||||||
|
img = img.to(device, non_blocking=True)
|
||||||
|
img = img.half() if half else img.float() # uint8 to fp16/32
|
||||||
|
img /= 255.0 # 0 - 255 to 0.0 - 1.0
|
||||||
|
targets = targets.to(device)
|
||||||
|
nb, _, height, width = img.shape # batch size, channels, height, width
|
||||||
|
|
||||||
|
with torch.no_grad():
|
||||||
|
# Run model
|
||||||
|
t = time_synchronized()
|
||||||
|
out, train_out = model(img, augment=augment) # inference and training outputs
|
||||||
|
t0 += time_synchronized() - t
|
||||||
|
|
||||||
|
# Compute loss
|
||||||
|
if compute_loss:
|
||||||
|
loss += compute_loss([x.float() for x in train_out], targets)[1][:3] # box, obj, cls
|
||||||
|
|
||||||
|
# Run NMS
|
||||||
|
targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels
|
||||||
|
lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
|
||||||
|
t = time_synchronized()
|
||||||
|
out = non_max_suppression(out, conf_thres=conf_thres, iou_thres=iou_thres, labels=lb, multi_label=True)
|
||||||
|
t1 += time_synchronized() - t
|
||||||
|
|
||||||
|
# Statistics per image
|
||||||
|
for si, pred in enumerate(out):
|
||||||
|
labels = targets[targets[:, 0] == si, 1:]
|
||||||
|
nl = len(labels)
|
||||||
|
tcls = labels[:, 0].tolist() if nl else [] # target class
|
||||||
|
path = Path(paths[si])
|
||||||
|
seen += 1
|
||||||
|
|
||||||
|
if len(pred) == 0:
|
||||||
|
if nl:
|
||||||
|
stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Predictions
|
||||||
|
predn = pred.clone()
|
||||||
|
scale_coords(img[si].shape[1:], predn[:, :4], shapes[si][0], shapes[si][1]) # native-space pred
|
||||||
|
|
||||||
|
# Append to text file
|
||||||
|
if save_txt:
|
||||||
|
gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0]] # normalization gain whwh
|
||||||
|
for *xyxy, conf, cls in predn.tolist():
|
||||||
|
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
|
||||||
|
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
|
||||||
|
with open(save_dir / 'labels' / (path.stem + '.txt'), 'a') as f:
|
||||||
|
f.write(('%g ' * len(line)).rstrip() % line + '\n')
|
||||||
|
|
||||||
|
# W&B logging - Media Panel Plots
|
||||||
|
if len(wandb_images) < log_imgs and wandb_logger.current_epoch > 0: # Check for test operation
|
||||||
|
if wandb_logger.current_epoch % wandb_logger.bbox_interval == 0:
|
||||||
|
box_data = [{"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
|
||||||
|
"class_id": int(cls),
|
||||||
|
"box_caption": "%s %.3f" % (names[cls], conf),
|
||||||
|
"scores": {"class_score": conf},
|
||||||
|
"domain": "pixel"} for *xyxy, conf, cls in pred.tolist()]
|
||||||
|
boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space
|
||||||
|
wandb_images.append(wandb_logger.wandb.Image(img[si], boxes=boxes, caption=path.name))
|
||||||
|
wandb_logger.log_training_progress(predn, path, names) if wandb_logger and wandb_logger.wandb_run else None
|
||||||
|
|
||||||
|
# Append to pycocotools JSON dictionary
|
||||||
|
if save_json:
|
||||||
|
# [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
|
||||||
|
image_id = int(path.stem) if path.stem.isnumeric() else path.stem
|
||||||
|
box = xyxy2xywh(predn[:, :4]) # xywh
|
||||||
|
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
|
||||||
|
for p, b in zip(pred.tolist(), box.tolist()):
|
||||||
|
jdict.append({'image_id': image_id,
|
||||||
|
'category_id': coco91class[int(p[5])] if is_coco else int(p[5]),
|
||||||
|
'bbox': [round(x, 3) for x in b],
|
||||||
|
'score': round(p[4], 5)})
|
||||||
|
|
||||||
|
# Assign all predictions as incorrect
|
||||||
|
correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device)
|
||||||
|
if nl:
|
||||||
|
detected = [] # target indices
|
||||||
|
tcls_tensor = labels[:, 0]
|
||||||
|
|
||||||
|
# target boxes
|
||||||
|
tbox = xywh2xyxy(labels[:, 1:5])
|
||||||
|
scale_coords(img[si].shape[1:], tbox, shapes[si][0], shapes[si][1]) # native-space labels
|
||||||
|
if plots:
|
||||||
|
confusion_matrix.process_batch(predn, torch.cat((labels[:, 0:1], tbox), 1))
|
||||||
|
|
||||||
|
# Per target class
|
||||||
|
for cls in torch.unique(tcls_tensor):
|
||||||
|
ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(-1) # prediction indices
|
||||||
|
pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(-1) # target indices
|
||||||
|
|
||||||
|
# Search for detections
|
||||||
|
if pi.shape[0]:
|
||||||
|
# Prediction to target ious
|
||||||
|
ious, i = box_iou(predn[pi, :4], tbox[ti]).max(1) # best ious, indices
|
||||||
|
|
||||||
|
# Append detections
|
||||||
|
detected_set = set()
|
||||||
|
for j in (ious > iouv[0]).nonzero(as_tuple=False):
|
||||||
|
d = ti[i[j]] # detected target
|
||||||
|
if d.item() not in detected_set:
|
||||||
|
detected_set.add(d.item())
|
||||||
|
detected.append(d)
|
||||||
|
correct[pi[j]] = ious[j] > iouv # iou_thres is 1xn
|
||||||
|
if len(detected) == nl: # all targets already located in image
|
||||||
|
break
|
||||||
|
|
||||||
|
# Append statistics (correct, conf, pcls, tcls)
|
||||||
|
stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))
|
||||||
|
|
||||||
|
# Plot images
|
||||||
|
if plots and batch_i < 3:
|
||||||
|
f = save_dir / f'test_batch{batch_i}_labels.jpg' # labels
|
||||||
|
Thread(target=plot_images, args=(img, targets, paths, f, names), daemon=True).start()
|
||||||
|
f = save_dir / f'test_batch{batch_i}_pred.jpg' # predictions
|
||||||
|
Thread(target=plot_images, args=(img, output_to_target(out), paths, f, names), daemon=True).start()
|
||||||
|
|
||||||
|
# Compute statistics
|
||||||
|
stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
|
||||||
|
if len(stats) and stats[0].any():
|
||||||
|
p, r, ap, f1, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
|
||||||
|
ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95
|
||||||
|
mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
|
||||||
|
nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class
|
||||||
|
else:
|
||||||
|
nt = torch.zeros(1)
|
||||||
|
|
||||||
|
# Print results
|
||||||
|
pf = '%20s' + '%12i' * 2 + '%12.3g' * 4 # print format
|
||||||
|
print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
|
||||||
|
|
||||||
|
# Print results per class
|
||||||
|
if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
|
||||||
|
for i, c in enumerate(ap_class):
|
||||||
|
print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
|
||||||
|
|
||||||
|
# Print speeds
|
||||||
|
t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size) # tuple
|
||||||
|
if not training:
|
||||||
|
print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t)
|
||||||
|
|
||||||
|
# Plots
|
||||||
|
if plots:
|
||||||
|
confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
|
||||||
|
if wandb_logger and wandb_logger.wandb:
|
||||||
|
val_batches = [wandb_logger.wandb.Image(str(f), caption=f.name) for f in sorted(save_dir.glob('test*.jpg'))]
|
||||||
|
wandb_logger.log({"Validation": val_batches})
|
||||||
|
if wandb_images:
|
||||||
|
wandb_logger.log({"Bounding Box Debugger/Images": wandb_images})
|
||||||
|
|
||||||
|
# Save JSON
|
||||||
|
if save_json and len(jdict):
|
||||||
|
w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights
|
||||||
|
anno_json = '../coco/annotations/instances_val2017.json' # annotations json
|
||||||
|
pred_json = str(save_dir / f"{w}_predictions.json") # predictions json
|
||||||
|
print('\nEvaluating pycocotools mAP... saving %s...' % pred_json)
|
||||||
|
with open(pred_json, 'w') as f:
|
||||||
|
json.dump(jdict, f)
|
||||||
|
|
||||||
|
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
|
||||||
|
from pycocotools.coco import COCO
|
||||||
|
from pycocotools.cocoeval import COCOeval
|
||||||
|
|
||||||
|
anno = COCO(anno_json) # init annotations api
|
||||||
|
pred = anno.loadRes(pred_json) # init predictions api
|
||||||
|
eval = COCOeval(anno, pred, 'bbox')
|
||||||
|
if is_coco:
|
||||||
|
eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files] # image IDs to evaluate
|
||||||
|
eval.evaluate()
|
||||||
|
eval.accumulate()
|
||||||
|
eval.summarize()
|
||||||
|
map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
|
||||||
|
except Exception as e:
|
||||||
|
print(f'pycocotools unable to run: {e}')
|
||||||
|
|
||||||
|
# Return results
|
||||||
|
model.float() # for training
|
||||||
|
if not training:
|
||||||
|
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
|
||||||
|
print(f"Results saved to {save_dir}{s}")
|
||||||
|
maps = np.zeros(nc) + map
|
||||||
|
for i, c in enumerate(ap_class):
|
||||||
|
maps[c] = ap[i]
|
||||||
|
return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
parser = argparse.ArgumentParser(prog='test.py')
|
||||||
|
parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
|
||||||
|
parser.add_argument('--data', type=str, default='data/coco128.yaml', help='*.data path')
|
||||||
|
parser.add_argument('--batch-size', type=int, default=32, help='size of each image batch')
|
||||||
|
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
|
||||||
|
parser.add_argument('--conf-thres', type=float, default=0.001, help='object confidence threshold')
|
||||||
|
parser.add_argument('--iou-thres', type=float, default=0.6, help='IOU threshold for NMS')
|
||||||
|
parser.add_argument('--task', default='val', help='train, val, test, speed or study')
|
||||||
|
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
||||||
|
parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
|
||||||
|
parser.add_argument('--augment', action='store_true', help='augmented inference')
|
||||||
|
parser.add_argument('--verbose', action='store_true', help='report mAP by class')
|
||||||
|
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
|
||||||
|
parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
|
||||||
|
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
|
||||||
|
parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file')
|
||||||
|
parser.add_argument('--project', default='runs/test', help='save to project/name')
|
||||||
|
parser.add_argument('--name', default='exp', help='save to project/name')
|
||||||
|
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
|
||||||
|
opt = parser.parse_args()
|
||||||
|
opt.save_json |= opt.data.endswith('coco.yaml')
|
||||||
|
opt.data = check_file(opt.data) # check file
|
||||||
|
print(opt)
|
||||||
|
check_requirements()
|
||||||
|
|
||||||
|
if opt.task in ('train', 'val', 'test'): # run normally
|
||||||
|
test(opt.data,
|
||||||
|
opt.weights,
|
||||||
|
opt.batch_size,
|
||||||
|
opt.img_size,
|
||||||
|
opt.conf_thres,
|
||||||
|
opt.iou_thres,
|
||||||
|
opt.save_json,
|
||||||
|
opt.single_cls,
|
||||||
|
opt.augment,
|
||||||
|
opt.verbose,
|
||||||
|
save_txt=opt.save_txt | opt.save_hybrid,
|
||||||
|
save_hybrid=opt.save_hybrid,
|
||||||
|
save_conf=opt.save_conf,
|
||||||
|
)
|
||||||
|
|
||||||
|
elif opt.task == 'speed': # speed benchmarks
|
||||||
|
for w in opt.weights:
|
||||||
|
test(opt.data, w, opt.batch_size, opt.img_size, 0.25, 0.45, save_json=False, plots=False)
|
||||||
|
|
||||||
|
elif opt.task == 'study': # run over a range of settings and save/plot
|
||||||
|
# python test.py --task study --data coco.yaml --iou 0.7 --weights yolov5s.pt yolov5m.pt yolov5l.pt yolov5x.pt
|
||||||
|
x = list(range(256, 1536 + 128, 128)) # x axis (image sizes)
|
||||||
|
for w in opt.weights:
|
||||||
|
f = f'study_{Path(opt.data).stem}_{Path(w).stem}.txt' # filename to save to
|
||||||
|
y = [] # y axis
|
||||||
|
for i in x: # img-size
|
||||||
|
print(f'\nRunning {f} point {i}...')
|
||||||
|
r, _, t = test(opt.data, w, opt.batch_size, i, opt.conf_thres, opt.iou_thres, opt.save_json,
|
||||||
|
plots=False)
|
||||||
|
y.append(r + t) # results and times
|
||||||
|
np.savetxt(f, y, fmt='%10.4g') # save
|
||||||
|
os.system('zip -r study.zip study_*.txt')
|
||||||
|
plot_study_txt(x=x) # plot
|
24
trainVal.py
Executable file
24
trainVal.py
Executable file
@ -0,0 +1,24 @@
|
|||||||
|
import random
|
||||||
|
import shutil
|
||||||
|
import os
|
||||||
|
def trainVal(path):
|
||||||
|
Totaldata = []
|
||||||
|
for dir in os.listdir(path):
|
||||||
|
if dir == 'images':
|
||||||
|
for fileName in os.listdir(os.sep.join([path, dir])):
|
||||||
|
Totaldata.append(fileName)
|
||||||
|
imagePath = path+'/'+'images'
|
||||||
|
random.shuffle(Totaldata)
|
||||||
|
val = Totaldata[:int(len(Totaldata)/10)]
|
||||||
|
train = Totaldata[int(len(Totaldata)/10):]
|
||||||
|
with open(path+'/'+'train.txt','w') as train_:
|
||||||
|
for data in train:
|
||||||
|
train_.write(imagePath+'/'+data)
|
||||||
|
with open(path+'/'+'val.txt','w') as val_:
|
||||||
|
for data in val:
|
||||||
|
val_.write(imagePath+'/'+data)
|
||||||
|
# return train, val
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
path = '/home/data/New_project/totaldata/shops_185'
|
||||||
|
trainVal(path)
|
638
train_zhanting.py
Executable file
638
train_zhanting.py
Executable file
@ -0,0 +1,638 @@
|
|||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import math
|
||||||
|
import os
|
||||||
|
import random
|
||||||
|
import time
|
||||||
|
from copy import deepcopy
|
||||||
|
from pathlib import Path
|
||||||
|
from threading import Thread
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import torch.distributed as dist
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
import torch.optim as optim
|
||||||
|
import torch.optim.lr_scheduler as lr_scheduler
|
||||||
|
import torch.utils.data
|
||||||
|
import yaml
|
||||||
|
from torch.cuda import amp
|
||||||
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||||
|
from torch.utils.tensorboard import SummaryWriter
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
import test # import test.py to get mAP after each epoch
|
||||||
|
from models.experimental import attempt_load
|
||||||
|
from models.yolo import Model
|
||||||
|
from utils.autoanchor import check_anchors
|
||||||
|
from utils.datasets import create_dataloader
|
||||||
|
from utils.general import labels_to_class_weights, increment_path, labels_to_image_weights, init_seeds, \
|
||||||
|
fitness, strip_optimizer, get_latest_run, check_dataset, check_file, check_git_status, check_img_size, \
|
||||||
|
check_requirements, print_mutation, set_logging, one_cycle, colorstr
|
||||||
|
from utils.google_utils import attempt_download
|
||||||
|
from utils.loss import ComputeLoss
|
||||||
|
from utils.plots import plot_images, plot_labels, plot_results, plot_evolution
|
||||||
|
from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_distributed_zero_first, is_parallel
|
||||||
|
from utils.wandb_logging.wandb_utils import WandbLogger, check_wandb_resume
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
||||||
|
os.environ["CUDA_VISIBLE_DEVICES"] ="1"
|
||||||
|
def train(hyp, opt, device, tb_writer=None):
|
||||||
|
#logger.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}'for k, v in hyp.items()))
|
||||||
|
save_dir, epochs, batch_size, total_batch_size, weights, rank = \
|
||||||
|
Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank
|
||||||
|
|
||||||
|
# Directories
|
||||||
|
wdir = save_dir / 'weights'
|
||||||
|
wdir.mkdir(parents=True, exist_ok=True) # make dir
|
||||||
|
last = wdir / 'last.pt'
|
||||||
|
best = wdir / 'best.pt'
|
||||||
|
results_file = save_dir / 'results.txt'
|
||||||
|
|
||||||
|
# Save run settings
|
||||||
|
with open(save_dir / 'hyp.yaml', 'w') as f:
|
||||||
|
yaml.dump(hyp, f, sort_keys=False)
|
||||||
|
with open(save_dir / 'opt.yaml', 'w') as f:
|
||||||
|
yaml.dump(vars(opt), f, sort_keys=False)
|
||||||
|
|
||||||
|
# Configure
|
||||||
|
plots = not opt.evolve # create plots
|
||||||
|
cuda = device.type != 'cpu'
|
||||||
|
init_seeds(2 + rank)
|
||||||
|
with open(opt.data) as f:
|
||||||
|
data_dict = yaml.load(f, Loader=yaml.SafeLoader) # data dict
|
||||||
|
is_coco = opt.data.endswith('coco.yaml')
|
||||||
|
|
||||||
|
# Logging- Doing this before checking the dataset. Might update data_dict
|
||||||
|
loggers = {'wandb': None} # loggers dict
|
||||||
|
if rank in [-1, 0]:
|
||||||
|
opt.hyp = hyp # add hyperparameters
|
||||||
|
run_id = torch.load(weights).get('wandb_id') if weights.endswith('.pt') and os.path.isfile(weights) else None
|
||||||
|
wandb_logger = WandbLogger(opt, Path(opt.save_dir).stem, run_id, data_dict)
|
||||||
|
loggers['wandb'] = wandb_logger.wandb
|
||||||
|
data_dict = wandb_logger.data_dict
|
||||||
|
if wandb_logger.wandb:
|
||||||
|
weights, epochs, hyp = opt.weights, opt.epochs, opt.hyp # WandbLogger might update weights, epochs if resuming
|
||||||
|
|
||||||
|
nc = 1 if opt.single_cls else int(data_dict['nc']) # number of classes
|
||||||
|
names = ['item'] if opt.single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
|
||||||
|
assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data) # check
|
||||||
|
|
||||||
|
# Model
|
||||||
|
pretrained = weights.endswith('.pt')
|
||||||
|
if pretrained:
|
||||||
|
with torch_distributed_zero_first(rank):
|
||||||
|
attempt_download(weights) # download if not found locally
|
||||||
|
ckpt = torch.load(weights, map_location=device) # load checkpoint
|
||||||
|
model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
|
||||||
|
exclude = ['anchor'] if (opt.cfg or hyp.get('anchors')) and not opt.resume else [] # exclude keys
|
||||||
|
state_dict = ckpt['model'].float().state_dict() # to FP32
|
||||||
|
state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude) # intersect
|
||||||
|
model.load_state_dict(state_dict, strict=False) # load
|
||||||
|
logger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights)) # report
|
||||||
|
else:
|
||||||
|
model = Model(opt.cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
|
||||||
|
with torch_distributed_zero_first(rank):
|
||||||
|
check_dataset(data_dict) # check
|
||||||
|
train_path = data_dict['train']
|
||||||
|
test_path = data_dict['val']
|
||||||
|
|
||||||
|
# Freeze
|
||||||
|
freeze = [] # parameter names to freeze (full or partial)
|
||||||
|
for k, v in model.named_parameters():
|
||||||
|
v.requires_grad = True # train all layers
|
||||||
|
if any(x in k for x in freeze):
|
||||||
|
print('freezing %s' % k)
|
||||||
|
v.requires_grad = False
|
||||||
|
|
||||||
|
# Optimizer
|
||||||
|
nbs = 64 # nominal batch size
|
||||||
|
accumulate = max(round(nbs / total_batch_size), 1) # accumulate loss before optimizing
|
||||||
|
hyp['weight_decay'] *= total_batch_size * accumulate / nbs # scale weight_decay
|
||||||
|
#logger.info(f"Scaled weight_decay = {hyp['weight_decay']}")
|
||||||
|
|
||||||
|
pg0, pg1, pg2 = [], [], [] # optimizer parameter groups
|
||||||
|
for k, v in model.named_modules():
|
||||||
|
if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
|
||||||
|
pg2.append(v.bias) # biases
|
||||||
|
if isinstance(v, nn.BatchNorm2d):
|
||||||
|
pg0.append(v.weight) # no decay
|
||||||
|
elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
|
||||||
|
pg1.append(v.weight) # apply decay
|
||||||
|
|
||||||
|
if opt.adam:
|
||||||
|
optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum
|
||||||
|
else:
|
||||||
|
optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
|
||||||
|
|
||||||
|
optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay
|
||||||
|
optimizer.add_param_group({'params': pg2}) # add pg2 (biases)
|
||||||
|
logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
|
||||||
|
del pg0, pg1, pg2
|
||||||
|
|
||||||
|
# Scheduler https://arxiv.org/pdf/1812.01187.pdf
|
||||||
|
# https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
|
||||||
|
if opt.linear_lr:
|
||||||
|
lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear
|
||||||
|
else:
|
||||||
|
lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf']
|
||||||
|
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
|
||||||
|
# plot_lr_scheduler(optimizer, scheduler, epochs)
|
||||||
|
|
||||||
|
# EMA
|
||||||
|
ema = ModelEMA(model) if rank in [-1, 0] else None
|
||||||
|
|
||||||
|
# Resume
|
||||||
|
start_epoch, best_fitness = 0, 0.0
|
||||||
|
if pretrained:
|
||||||
|
# Optimizer
|
||||||
|
if ckpt['optimizer'] is not None:
|
||||||
|
optimizer.load_state_dict(ckpt['optimizer'])
|
||||||
|
best_fitness = ckpt['best_fitness']
|
||||||
|
|
||||||
|
# EMA
|
||||||
|
if ema and ckpt.get('ema'):
|
||||||
|
ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
|
||||||
|
ema.updates = ckpt['updates']
|
||||||
|
|
||||||
|
# Results
|
||||||
|
if ckpt.get('training_results') is not None:
|
||||||
|
results_file.write_text(ckpt['training_results']) # write results.txt
|
||||||
|
|
||||||
|
# Epochs
|
||||||
|
start_epoch = ckpt['epoch'] + 1
|
||||||
|
if opt.resume:
|
||||||
|
assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs)
|
||||||
|
if epochs < start_epoch:
|
||||||
|
logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
|
||||||
|
(weights, ckpt['epoch'], epochs))
|
||||||
|
epochs += ckpt['epoch'] # finetune additional epochs
|
||||||
|
|
||||||
|
del ckpt, state_dict
|
||||||
|
|
||||||
|
# Image sizes
|
||||||
|
gs = max(int(model.stride.max()), 32) # grid size (max stride)
|
||||||
|
nl = model.model[-1].nl # number of detection layers (used for scaling hyp['obj'])
|
||||||
|
imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size] # verify imgsz are gs-multiples
|
||||||
|
|
||||||
|
# DP mode
|
||||||
|
if cuda and rank == -1 and torch.cuda.device_count() > 1:
|
||||||
|
model = torch.nn.DataParallel(model)
|
||||||
|
|
||||||
|
# SyncBatchNorm
|
||||||
|
if opt.sync_bn and cuda and rank != -1:
|
||||||
|
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
|
||||||
|
logger.info('Using SyncBatchNorm()')
|
||||||
|
|
||||||
|
# Trainloader
|
||||||
|
dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt,
|
||||||
|
hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect, rank=rank,
|
||||||
|
world_size=opt.world_size, workers=opt.workers,
|
||||||
|
image_weights=opt.image_weights, quad=opt.quad, prefix=colorstr('train: '))
|
||||||
|
mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class
|
||||||
|
nb = len(dataloader) # number of batches
|
||||||
|
assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, opt.data, nc - 1)
|
||||||
|
|
||||||
|
# Process 0
|
||||||
|
if rank in [-1, 0]:
|
||||||
|
testloader = create_dataloader(test_path, imgsz_test, batch_size * 2, gs, opt, # testloader
|
||||||
|
hyp=hyp, cache=opt.cache_images and not opt.notest, rect=True, rank=-1,
|
||||||
|
world_size=opt.world_size, workers=opt.workers,
|
||||||
|
pad=0.5, prefix=colorstr('val: '))[0]
|
||||||
|
|
||||||
|
if not opt.resume:
|
||||||
|
labels = np.concatenate(dataset.labels, 0)
|
||||||
|
c = torch.tensor(labels[:, 0]) # classes
|
||||||
|
# cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency
|
||||||
|
# model._initialize_biases(cf.to(device))
|
||||||
|
if plots:
|
||||||
|
plot_labels(labels, names, save_dir, loggers)
|
||||||
|
if tb_writer:
|
||||||
|
tb_writer.add_histogram('classes', c, 0)
|
||||||
|
|
||||||
|
# Anchors
|
||||||
|
if not opt.noautoanchor:
|
||||||
|
check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
|
||||||
|
model.half().float() # pre-reduce anchor precision
|
||||||
|
|
||||||
|
# DDP mode
|
||||||
|
if cuda and rank != -1:
|
||||||
|
model = DDP(model, device_ids=[opt.local_rank], output_device=opt.local_rank,
|
||||||
|
# nn.MultiheadAttention incompatibility with DDP https://github.com/pytorch/pytorch/issues/26698
|
||||||
|
find_unused_parameters=any(isinstance(layer, nn.MultiheadAttention) for layer in model.modules()))
|
||||||
|
|
||||||
|
# Model parameters
|
||||||
|
hyp['box'] *= 3. / nl # scale to layers
|
||||||
|
hyp['cls'] *= nc / 80. * 3. / nl # scale to classes and layers
|
||||||
|
hyp['obj'] *= (imgsz / 640) ** 2 * 3. / nl # scale to image size and layers
|
||||||
|
hyp['label_smoothing'] = opt.label_smoothing
|
||||||
|
model.nc = nc # attach number of classes to model
|
||||||
|
model.hyp = hyp # attach hyperparameters to model
|
||||||
|
model.gr = 1.0 # iou loss ratio (obj_loss = 1.0 or iou)
|
||||||
|
model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights
|
||||||
|
model.names = names
|
||||||
|
|
||||||
|
# Start training
|
||||||
|
t0 = time.time()
|
||||||
|
nw = max(round(hyp['warmup_epochs'] * nb), 1000) # number of warmup iterations, max(3 epochs, 1k iterations)
|
||||||
|
# nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
|
||||||
|
maps = np.zeros(nc) # mAP per class
|
||||||
|
results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
|
||||||
|
scheduler.last_epoch = start_epoch - 1 # do not move
|
||||||
|
scaler = amp.GradScaler(enabled=cuda)
|
||||||
|
compute_loss = ComputeLoss(model) # init loss class
|
||||||
|
#logger.info(f'Image sizes {imgsz} train, {imgsz_test} test\n'
|
||||||
|
# f'Using {dataloader.num_workers} dataloader workers\n'
|
||||||
|
# f'Logging results to {save_dir}\n'
|
||||||
|
# f'Starting training for {epochs} epochs...')
|
||||||
|
for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
|
||||||
|
model.train()
|
||||||
|
|
||||||
|
# Update image weights (optional)
|
||||||
|
if opt.image_weights:
|
||||||
|
# Generate indices
|
||||||
|
if rank in [-1, 0]:
|
||||||
|
cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights
|
||||||
|
iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights
|
||||||
|
dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx
|
||||||
|
# Broadcast if DDP
|
||||||
|
if rank != -1:
|
||||||
|
indices = (torch.tensor(dataset.indices) if rank == 0 else torch.zeros(dataset.n)).int()
|
||||||
|
dist.broadcast(indices, 0)
|
||||||
|
if rank != 0:
|
||||||
|
dataset.indices = indices.cpu().numpy()
|
||||||
|
|
||||||
|
# Update mosaic border
|
||||||
|
# b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
|
||||||
|
# dataset.mosaic_border = [b - imgsz, -b] # height, width borders
|
||||||
|
|
||||||
|
mloss = torch.zeros(4, device=device) # mean losses
|
||||||
|
if rank != -1:
|
||||||
|
dataloader.sampler.set_epoch(epoch)
|
||||||
|
pbar = enumerate(dataloader)
|
||||||
|
logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'labels', 'img_size'))
|
||||||
|
if rank in [-1, 0]:
|
||||||
|
pbar = tqdm(pbar, total=nb) # progress bar
|
||||||
|
optimizer.zero_grad()
|
||||||
|
for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
|
||||||
|
ni = i + nb * epoch # number integrated batches (since train start)
|
||||||
|
imgs = imgs.to(device, non_blocking=True).float() / 255.0 # uint8 to float32, 0-255 to 0.0-1.0
|
||||||
|
|
||||||
|
# Warmup
|
||||||
|
if ni <= nw:
|
||||||
|
xi = [0, nw] # x interp
|
||||||
|
# model.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
|
||||||
|
accumulate = max(1, np.interp(ni, xi, [1, nbs / total_batch_size]).round())
|
||||||
|
for j, x in enumerate(optimizer.param_groups):
|
||||||
|
# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
|
||||||
|
x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
|
||||||
|
if 'momentum' in x:
|
||||||
|
x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
|
||||||
|
|
||||||
|
# Multi-scale
|
||||||
|
if opt.multi_scale:
|
||||||
|
sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size
|
||||||
|
sf = sz / max(imgs.shape[2:]) # scale factor
|
||||||
|
if sf != 1:
|
||||||
|
ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
|
||||||
|
imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
|
||||||
|
|
||||||
|
# Forward
|
||||||
|
with amp.autocast(enabled=cuda):
|
||||||
|
pred = model(imgs) # forward
|
||||||
|
loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size
|
||||||
|
if rank != -1:
|
||||||
|
loss *= opt.world_size # gradient averaged between devices in DDP mode
|
||||||
|
if opt.quad:
|
||||||
|
loss *= 4.
|
||||||
|
|
||||||
|
# Backward
|
||||||
|
scaler.scale(loss).backward()
|
||||||
|
|
||||||
|
# Optimize
|
||||||
|
if ni % accumulate == 0:
|
||||||
|
scaler.step(optimizer) # optimizer.step
|
||||||
|
scaler.update()
|
||||||
|
optimizer.zero_grad()
|
||||||
|
if ema:
|
||||||
|
ema.update(model)
|
||||||
|
|
||||||
|
# Print
|
||||||
|
if rank in [-1, 0]:
|
||||||
|
mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
|
||||||
|
mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB)
|
||||||
|
s = ('%10s' * 2 + '%10.4g' * 6) % ('%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgs.shape[-1])
|
||||||
|
#s = ('%10s' * 2 + '%10.4g' * 5) % (f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1])
|
||||||
|
pbar.set_description(s)
|
||||||
|
|
||||||
|
# Plot
|
||||||
|
if plots and ni < 3:
|
||||||
|
#f = save_dir / f'train_batch{ni}.jpg' # filename
|
||||||
|
f = save_dir / 'train_batch{ni}.jpg' # filename
|
||||||
|
Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start()
|
||||||
|
# if tb_writer:
|
||||||
|
# tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
|
||||||
|
# tb_writer.add_graph(model, imgs) # add model to tensorboard
|
||||||
|
elif plots and ni == 10 and wandb_logger.wandb:
|
||||||
|
wandb_logger.log({"Mosaics": [wandb_logger.wandb.Image(str(x), caption=x.name) for x in
|
||||||
|
save_dir.glob('train*.jpg') if x.exists()]})
|
||||||
|
|
||||||
|
# end batch ------------------------------------------------------------------------------------------------
|
||||||
|
# end epoch ----------------------------------------------------------------------------------------------------
|
||||||
|
|
||||||
|
# Scheduler
|
||||||
|
lr = [x['lr'] for x in optimizer.param_groups] # for tensorboard
|
||||||
|
scheduler.step()
|
||||||
|
|
||||||
|
# DDP process 0 or single-GPU
|
||||||
|
if rank in [-1, 0]:
|
||||||
|
# mAP
|
||||||
|
ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride', 'class_weights'])
|
||||||
|
final_epoch = epoch + 1 == epochs
|
||||||
|
if not opt.notest or final_epoch: # Calculate mAP
|
||||||
|
wandb_logger.current_epoch = epoch + 1
|
||||||
|
results, maps, times = test.test(data_dict,
|
||||||
|
batch_size=batch_size * 2,
|
||||||
|
imgsz=imgsz_test,
|
||||||
|
model=ema.ema,
|
||||||
|
single_cls=opt.single_cls,
|
||||||
|
dataloader=testloader,
|
||||||
|
save_dir=save_dir,
|
||||||
|
verbose=nc < 50 and final_epoch,
|
||||||
|
plots=plots and final_epoch,
|
||||||
|
wandb_logger=wandb_logger,
|
||||||
|
compute_loss=compute_loss,
|
||||||
|
is_coco=is_coco)
|
||||||
|
|
||||||
|
# Write
|
||||||
|
with open(results_file, 'a') as f:
|
||||||
|
f.write(s + '%10.4g' * 7 % results + '\n') # append metrics, val_loss
|
||||||
|
if len(opt.name) and opt.bucket:
|
||||||
|
os.system('gsutil cp %s gs://%s/results/results%s.txt' % (results_file, opt.bucket, opt.name))
|
||||||
|
|
||||||
|
# Log
|
||||||
|
tags = ['train/box_loss', 'train/obj_loss', 'train/cls_loss', # train loss
|
||||||
|
'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
|
||||||
|
'val/box_loss', 'val/obj_loss', 'val/cls_loss', # val loss
|
||||||
|
'x/lr0', 'x/lr1', 'x/lr2'] # params
|
||||||
|
for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
|
||||||
|
if tb_writer:
|
||||||
|
tb_writer.add_scalar(tag, x, epoch) # tensorboard
|
||||||
|
if wandb_logger.wandb:
|
||||||
|
wandb_logger.log({tag: x}) # W&B
|
||||||
|
|
||||||
|
# Update best mAP
|
||||||
|
fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
|
||||||
|
if fi > best_fitness:
|
||||||
|
best_fitness = fi
|
||||||
|
wandb_logger.end_epoch(best_result=best_fitness == fi)
|
||||||
|
|
||||||
|
# Save model
|
||||||
|
if (not opt.nosave) or (final_epoch and not opt.evolve): # if save
|
||||||
|
ckpt = {'epoch': epoch,
|
||||||
|
'best_fitness': best_fitness,
|
||||||
|
'training_results': results_file.read_text(),
|
||||||
|
'model': deepcopy(model.module if is_parallel(model) else model).half(),
|
||||||
|
'ema': deepcopy(ema.ema).half(),
|
||||||
|
'updates': ema.updates,
|
||||||
|
'optimizer': optimizer.state_dict(),
|
||||||
|
'wandb_id': wandb_logger.wandb_run.id if wandb_logger.wandb else None}
|
||||||
|
|
||||||
|
# Save last, best and delete
|
||||||
|
torch.save(ckpt, last)
|
||||||
|
if best_fitness == fi:
|
||||||
|
torch.save(ckpt, best)
|
||||||
|
if wandb_logger.wandb:
|
||||||
|
if ((epoch + 1) % opt.save_period == 0 and not final_epoch) and opt.save_period != -1:
|
||||||
|
wandb_logger.log_model(
|
||||||
|
last.parent, opt, epoch, fi, best_model=best_fitness == fi)
|
||||||
|
del ckpt
|
||||||
|
|
||||||
|
# end epoch ----------------------------------------------------------------------------------------------------
|
||||||
|
# end training
|
||||||
|
if rank in [-1, 0]:
|
||||||
|
# Plots
|
||||||
|
if plots:
|
||||||
|
plot_results(save_dir=save_dir) # save as results.png
|
||||||
|
if wandb_logger.wandb:
|
||||||
|
#files = ['results.png', 'confusion_matrix.png', *[f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R')]]
|
||||||
|
files = ['results.png', 'confusion_matrix.png', *['{x}_curve.png' for x in ('F1', 'PR', 'P', 'R')]]
|
||||||
|
wandb_logger.log({"Results": [wandb_logger.wandb.Image(str(save_dir / f), caption=f) for f in files
|
||||||
|
if (save_dir / f).exists()]})
|
||||||
|
# Test best.pt
|
||||||
|
logger.info('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
|
||||||
|
if opt.data.endswith('coco.yaml') and nc == 80: # if COCO
|
||||||
|
for m in (last, best) if best.exists() else (last): # speed, mAP tests
|
||||||
|
results, _, _ = test.test(opt.data,
|
||||||
|
batch_size=batch_size * 2,
|
||||||
|
imgsz=imgsz_test,
|
||||||
|
conf_thres=0.001,
|
||||||
|
iou_thres=0.7,
|
||||||
|
model=attempt_load(m, device).half(),
|
||||||
|
single_cls=opt.single_cls,
|
||||||
|
dataloader=testloader,
|
||||||
|
save_dir=save_dir,
|
||||||
|
save_json=True,
|
||||||
|
plots=False,
|
||||||
|
is_coco=is_coco)
|
||||||
|
|
||||||
|
# Strip optimizers
|
||||||
|
final = best if best.exists() else last # final model
|
||||||
|
for f in last, best:
|
||||||
|
if f.exists():
|
||||||
|
strip_optimizer(f) # strip optimizers
|
||||||
|
if opt.bucket:
|
||||||
|
os.system('gsutil cp {final} gs://{opt.bucket}/weights') # upload
|
||||||
|
if wandb_logger.wandb and not opt.evolve: # Log the stripped model
|
||||||
|
wandb_logger.wandb.log_artifact(str(final), type='model',
|
||||||
|
name='run_' + wandb_logger.wandb_run.id + '_model',
|
||||||
|
aliases=['last', 'best', 'stripped'])
|
||||||
|
wandb_logger.finish_run()
|
||||||
|
else:
|
||||||
|
dist.destroy_process_group()
|
||||||
|
torch.cuda.empty_cache()
|
||||||
|
return results
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
#parser.add_argument('--weights', type=str, default='runs/zhanting/yolov5s_finetune/exp9/weights/best.pt', help='initial weights path')
|
||||||
|
#parser.add_argument('--weights', type=str, default='runs/zhanting/yolov5m_finetune/exp/weights/best.pt', help='initial weights path')
|
||||||
|
parser.add_argument('--weights', type=str, default='weights/yolov5m.pt', help='initial weights path')
|
||||||
|
#parser.add_argument('--weights', type=str, default='runs/zhanting/yolov5l_finetune/exp7/weights/best.pt', help='initial weights path')
|
||||||
|
parser.add_argument('--cfg', type=str, default='models/yolov5m.yaml', help='model.yaml path')
|
||||||
|
parser.add_argument('--data', type=str, default='data/zhanting.yaml', help='data.yaml path')
|
||||||
|
parser.add_argument('--hyp', type=str, default='data/hyp.finetune.yaml', help='hyperparameters path')
|
||||||
|
#parser.add_argument('--hyp', type=str, default='data/hyp.scratch.yaml', help='hyperparameters path')
|
||||||
|
parser.add_argument('--epochs', type=int, default=600)
|
||||||
|
parser.add_argument('--batch-size', type=int, default=32, help='total batch size for all GPUs')
|
||||||
|
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='[train, test] image sizes')
|
||||||
|
parser.add_argument('--rect', action='store_true', help='rectangular training')
|
||||||
|
parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
|
||||||
|
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
|
||||||
|
parser.add_argument('--notest', action='store_true', help='only test final epoch')
|
||||||
|
parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
|
||||||
|
parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
|
||||||
|
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
|
||||||
|
parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
|
||||||
|
parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
|
||||||
|
parser.add_argument('--device', default='0,1', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
||||||
|
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
|
||||||
|
parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
|
||||||
|
parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
|
||||||
|
parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
|
||||||
|
parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
|
||||||
|
parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers')
|
||||||
|
#parser.add_argument('--project', default='runs/zhanting/yolov5s_finetune', help='save to project/name')
|
||||||
|
parser.add_argument('--project', default='runs/zhanting/yolov5m_finetune', help='save to project/name')
|
||||||
|
#parser.add_argument('--project', default='runs/zhanting/yolov5_scratch', help='save to project/name')
|
||||||
|
parser.add_argument('--entity', default=None, help='W&B entity')
|
||||||
|
parser.add_argument('--name', default='exp', help='save to project/name')
|
||||||
|
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
|
||||||
|
parser.add_argument('--quad', action='store_true', help='quad dataloader')
|
||||||
|
parser.add_argument('--linear-lr', action='store_true', help='linear LR')
|
||||||
|
parser.add_argument('--label-smoothing', type=float, default=0.1, help='Label smoothing epsilon')
|
||||||
|
parser.add_argument('--upload_dataset', action='store_true', help='Upload dataset as W&B artifact table')
|
||||||
|
parser.add_argument('--bbox_interval', type=int, default=-1, help='Set bounding-box image logging interval for W&B')
|
||||||
|
parser.add_argument('--save_period', type=int, default=-1, help='Log model after every "save_period" epoch')
|
||||||
|
parser.add_argument('--artifact_alias', type=str, default="latest", help='version of dataset artifact to be used')
|
||||||
|
opt = parser.parse_args()
|
||||||
|
|
||||||
|
# Set DDP variables
|
||||||
|
opt.world_size = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
|
||||||
|
opt.global_rank = int(os.environ['RANK']) if 'RANK' in os.environ else -1
|
||||||
|
set_logging(opt.global_rank)
|
||||||
|
if opt.global_rank in [-1, 0]:
|
||||||
|
check_git_status()
|
||||||
|
check_requirements()
|
||||||
|
|
||||||
|
# Resume
|
||||||
|
wandb_run = check_wandb_resume(opt)
|
||||||
|
if opt.resume and not wandb_run: # resume an interrupted run
|
||||||
|
ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or most recent path
|
||||||
|
assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'
|
||||||
|
apriori = opt.global_rank, opt.local_rank
|
||||||
|
with open(Path(ckpt).parent.parent / 'opt.yaml') as f:
|
||||||
|
opt = argparse.Namespace(**yaml.load(f, Loader=yaml.SafeLoader)) # replace
|
||||||
|
opt.cfg, opt.weights, opt.resume, opt.batch_size, opt.global_rank, opt.local_rank = '', ckpt, True, opt.total_batch_size, *apriori # reinstate
|
||||||
|
logger.info('Resuming training from %s' % ckpt)
|
||||||
|
else:
|
||||||
|
# opt.hyp = opt.hyp or ('hyp.finetune.yaml' if opt.weights else 'hyp.scratch.yaml')
|
||||||
|
opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp) # check files
|
||||||
|
assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
|
||||||
|
opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test)
|
||||||
|
opt.name = 'evolve' if opt.evolve else opt.name
|
||||||
|
opt.save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok | opt.evolve) # increment run
|
||||||
|
|
||||||
|
# DDP mode
|
||||||
|
opt.total_batch_size = opt.batch_size
|
||||||
|
device = select_device(opt.device, batch_size=opt.batch_size)
|
||||||
|
if opt.local_rank != -1:
|
||||||
|
assert torch.cuda.device_count() > opt.local_rank
|
||||||
|
torch.cuda.set_device(opt.local_rank)
|
||||||
|
device = torch.device('cuda', opt.local_rank)
|
||||||
|
dist.init_process_group(backend='nccl', init_method='env://') # distributed backend
|
||||||
|
assert opt.batch_size % opt.world_size == 0, '--batch-size must be multiple of CUDA device count'
|
||||||
|
opt.batch_size = opt.total_batch_size // opt.world_size
|
||||||
|
|
||||||
|
# Hyperparameters
|
||||||
|
with open(opt.hyp) as f:
|
||||||
|
hyp = yaml.load(f, Loader=yaml.SafeLoader) # load hyps
|
||||||
|
|
||||||
|
# Train
|
||||||
|
logger.info(opt)
|
||||||
|
if not opt.evolve:
|
||||||
|
tb_writer = None # init loggers
|
||||||
|
if opt.global_rank in [-1, 0]:
|
||||||
|
prefix = colorstr('tensorboard: ')
|
||||||
|
logger.info("{prefix}Start with 'tensorboard --logdir {opt.project}', view at http://localhost:6006/")
|
||||||
|
tb_writer = SummaryWriter(opt.save_dir) # Tensorboard
|
||||||
|
train(hyp, opt, device, tb_writer)
|
||||||
|
|
||||||
|
# Evolve hyperparameters (optional)
|
||||||
|
else:
|
||||||
|
# Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
|
||||||
|
meta = {'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
|
||||||
|
'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
|
||||||
|
'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1
|
||||||
|
'weight_decay': (1, 0.0, 0.001), # optimizer weight decay
|
||||||
|
'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok)
|
||||||
|
'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum
|
||||||
|
'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr
|
||||||
|
'box': (1, 0.02, 0.2), # box loss gain
|
||||||
|
'cls': (1, 0.2, 4.0), # cls loss gain
|
||||||
|
'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
|
||||||
|
'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)
|
||||||
|
'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight
|
||||||
|
'iou_t': (0, 0.1, 0.7), # IoU training threshold
|
||||||
|
'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold
|
||||||
|
'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore)
|
||||||
|
'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
|
||||||
|
'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
|
||||||
|
'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
|
||||||
|
'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
|
||||||
|
'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)
|
||||||
|
'translate': (1, 0.0, 0.9), # image translation (+/- fraction)
|
||||||
|
'scale': (1, 0.0, 0.9), # image scale (+/- gain)
|
||||||
|
'shear': (1, 0.0, 10.0), # image shear (+/- deg)
|
||||||
|
'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
|
||||||
|
'flipud': (1, 0.0, 1.0), # image flip up-down (probability)
|
||||||
|
'fliplr': (0, 0.0, 1.0), # image flip left-right (probability)
|
||||||
|
'mosaic': (1, 0.0, 1.0), # image mixup (probability)
|
||||||
|
'mixup': (1, 0.0, 1.0)} # image mixup (probability)
|
||||||
|
|
||||||
|
assert opt.local_rank == -1, 'DDP mode not implemented for --evolve'
|
||||||
|
with open(opt.hyp) as f:
|
||||||
|
hyp = yaml.safe_load(f) # load hyps dict
|
||||||
|
if 'anchors' not in hyp: # anchors commented in hyp.yaml
|
||||||
|
hyp['anchors'] = 3
|
||||||
|
opt.notest, opt.nosave = True, True # only test/save final epoch
|
||||||
|
# ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
|
||||||
|
yaml_file = Path(opt.save_dir) / 'hyp_evolved.yaml' # save best result here
|
||||||
|
if opt.bucket:
|
||||||
|
os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists
|
||||||
|
|
||||||
|
for _ in range(300): # generations to evolve
|
||||||
|
if Path('evolve.txt').exists(): # if evolve.txt exists: select best hyps and mutate
|
||||||
|
# Select parent(s)
|
||||||
|
parent = 'single' # parent selection method: 'single' or 'weighted'
|
||||||
|
x = np.loadtxt('evolve.txt', ndmin=2)
|
||||||
|
n = min(5, len(x)) # number of previous results to consider
|
||||||
|
x = x[np.argsort(-fitness(x))][:n] # top n mutations
|
||||||
|
w = fitness(x) - fitness(x).min() # weights
|
||||||
|
if parent == 'single' or len(x) == 1:
|
||||||
|
# x = x[random.randint(0, n - 1)] # random selection
|
||||||
|
x = x[random.choices(range(n), weights=w)[0]] # weighted selection
|
||||||
|
elif parent == 'weighted':
|
||||||
|
x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
|
||||||
|
|
||||||
|
# Mutate
|
||||||
|
mp, s = 0.8, 0.2 # mutation probability, sigma
|
||||||
|
npr = np.random
|
||||||
|
npr.seed(int(time.time()))
|
||||||
|
g = np.array([x[0] for x in meta.values()]) # gains 0-1
|
||||||
|
ng = len(meta)
|
||||||
|
v = np.ones(ng)
|
||||||
|
while all(v == 1): # mutate until a change occurs (prevent duplicates)
|
||||||
|
v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
|
||||||
|
for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
|
||||||
|
hyp[k] = float(x[i + 7] * v[i]) # mutate
|
||||||
|
|
||||||
|
# Constrain to limits
|
||||||
|
for k, v in meta.items():
|
||||||
|
hyp[k] = max(hyp[k], v[1]) # lower limit
|
||||||
|
hyp[k] = min(hyp[k], v[2]) # upper limit
|
||||||
|
hyp[k] = round(hyp[k], 5) # significant digits
|
||||||
|
|
||||||
|
# Train mutation
|
||||||
|
results = train(hyp.copy(), opt, device)
|
||||||
|
|
||||||
|
# Write mutation results
|
||||||
|
print_mutation(hyp.copy(), results, yaml_file, opt.bucket)
|
||||||
|
|
||||||
|
# Plot results
|
||||||
|
plot_evolution(yaml_file)
|
||||||
|
print('Hyperparameter evolution complete. Best results saved as: {yaml_file}\n'
|
||||||
|
'Command to train a new model with these hyperparameters: $ python train.py --hyp {yaml_file}')
|
1274
tutorial.ipynb
vendored
Executable file
1274
tutorial.ipynb
vendored
Executable file
File diff suppressed because one or more lines are too long
0
utils/__init__.py
Executable file
0
utils/__init__.py
Executable file
72
utils/activations.py
Executable file
72
utils/activations.py
Executable file
@ -0,0 +1,72 @@
|
|||||||
|
# Activation functions
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
|
||||||
|
# SiLU https://arxiv.org/pdf/1606.08415.pdf ----------------------------------------------------------------------------
|
||||||
|
class SiLU(nn.Module): # export-friendly version of nn.SiLU()
|
||||||
|
@staticmethod
|
||||||
|
def forward(x):
|
||||||
|
return x * torch.sigmoid(x)
|
||||||
|
|
||||||
|
|
||||||
|
class Hardswish(nn.Module): # export-friendly version of nn.Hardswish()
|
||||||
|
@staticmethod
|
||||||
|
def forward(x):
|
||||||
|
# return x * F.hardsigmoid(x) # for torchscript and CoreML
|
||||||
|
return x * F.hardtanh(x + 3, 0., 6.) / 6. # for torchscript, CoreML and ONNX
|
||||||
|
|
||||||
|
|
||||||
|
class MemoryEfficientSwish(nn.Module):
|
||||||
|
class F(torch.autograd.Function):
|
||||||
|
@staticmethod
|
||||||
|
def forward(ctx, x):
|
||||||
|
ctx.save_for_backward(x)
|
||||||
|
return x * torch.sigmoid(x)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def backward(ctx, grad_output):
|
||||||
|
x = ctx.saved_tensors[0]
|
||||||
|
sx = torch.sigmoid(x)
|
||||||
|
return grad_output * (sx * (1 + x * (1 - sx)))
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return self.F.apply(x)
|
||||||
|
|
||||||
|
|
||||||
|
# Mish https://github.com/digantamisra98/Mish --------------------------------------------------------------------------
|
||||||
|
class Mish(nn.Module):
|
||||||
|
@staticmethod
|
||||||
|
def forward(x):
|
||||||
|
return x * F.softplus(x).tanh()
|
||||||
|
|
||||||
|
|
||||||
|
class MemoryEfficientMish(nn.Module):
|
||||||
|
class F(torch.autograd.Function):
|
||||||
|
@staticmethod
|
||||||
|
def forward(ctx, x):
|
||||||
|
ctx.save_for_backward(x)
|
||||||
|
return x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + exp(x)))
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def backward(ctx, grad_output):
|
||||||
|
x = ctx.saved_tensors[0]
|
||||||
|
sx = torch.sigmoid(x)
|
||||||
|
fx = F.softplus(x).tanh()
|
||||||
|
return grad_output * (fx + x * sx * (1 - fx * fx))
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return self.F.apply(x)
|
||||||
|
|
||||||
|
|
||||||
|
# FReLU https://arxiv.org/abs/2007.11824 -------------------------------------------------------------------------------
|
||||||
|
class FReLU(nn.Module):
|
||||||
|
def __init__(self, c1, k=3): # ch_in, kernel
|
||||||
|
super().__init__()
|
||||||
|
self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1, bias=False)
|
||||||
|
self.bn = nn.BatchNorm2d(c1)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return torch.max(x, self.bn(self.conv(x)))
|
163
utils/autoanchor.py
Executable file
163
utils/autoanchor.py
Executable file
@ -0,0 +1,163 @@
|
|||||||
|
# Auto-anchor utils
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
import yaml
|
||||||
|
from scipy.cluster.vq import kmeans
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
from utils.general import colorstr
|
||||||
|
|
||||||
|
|
||||||
|
def check_anchor_order(m):
|
||||||
|
# Check anchor order against stride order for YOLOv5 Detect() module m, and correct if necessary
|
||||||
|
a = m.anchor_grid.prod(-1).view(-1) # anchor area
|
||||||
|
da = a[-1] - a[0] # delta a
|
||||||
|
ds = m.stride[-1] - m.stride[0] # delta s
|
||||||
|
if da.sign() != ds.sign(): # same order
|
||||||
|
print('Reversing anchor order')
|
||||||
|
m.anchors[:] = m.anchors.flip(0)
|
||||||
|
m.anchor_grid[:] = m.anchor_grid.flip(0)
|
||||||
|
|
||||||
|
|
||||||
|
def check_anchors(dataset, model, thr=4.0, imgsz=640):
|
||||||
|
# Check anchor fit to data, recompute if necessary
|
||||||
|
prefix = colorstr('autoanchor: ')
|
||||||
|
print(f'\n{prefix}Analyzing anchors... ', end='')
|
||||||
|
m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] # Detect()
|
||||||
|
shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
|
||||||
|
scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) # augment scale
|
||||||
|
wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float() # wh
|
||||||
|
|
||||||
|
def metric(k): # compute metric
|
||||||
|
r = wh[:, None] / k[None]
|
||||||
|
x = torch.min(r, 1. / r).min(2)[0] # ratio metric
|
||||||
|
best = x.max(1)[0] # best_x
|
||||||
|
aat = (x > 1. / thr).float().sum(1).mean() # anchors above threshold
|
||||||
|
bpr = (best > 1. / thr).float().mean() # best possible recall
|
||||||
|
return bpr, aat
|
||||||
|
|
||||||
|
anchors = m.anchor_grid.clone().cpu().view(-1, 2) # current anchors
|
||||||
|
bpr, aat = metric(anchors)
|
||||||
|
print(f'anchors/target = {aat:.2f}, Best Possible Recall (BPR) = {bpr:.4f}', end='')
|
||||||
|
if bpr < 0.98: # threshold to recompute
|
||||||
|
print('. Attempting to improve anchors, please wait...')
|
||||||
|
na = m.anchor_grid.numel() // 2 # number of anchors
|
||||||
|
try:
|
||||||
|
anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
|
||||||
|
except Exception as e:
|
||||||
|
print(f'{prefix}ERROR: {e}')
|
||||||
|
new_bpr = metric(anchors)[0]
|
||||||
|
if new_bpr > bpr: # replace anchors
|
||||||
|
anchors = torch.tensor(anchors, device=m.anchors.device).type_as(m.anchors)
|
||||||
|
m.anchor_grid[:] = anchors.clone().view_as(m.anchor_grid) # for inference
|
||||||
|
m.anchors[:] = anchors.clone().view_as(m.anchors) / m.stride.to(m.anchors.device).view(-1, 1, 1) # loss
|
||||||
|
check_anchor_order(m)
|
||||||
|
print(f'{prefix}New anchors saved to model. Update model *.yaml to use these anchors in the future.')
|
||||||
|
else:
|
||||||
|
print(f'{prefix}Original anchors better than new anchors. Proceeding with original anchors.')
|
||||||
|
print('') # newline
|
||||||
|
|
||||||
|
|
||||||
|
def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
|
||||||
|
""" Creates kmeans-evolved anchors from training dataset
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
path: path to dataset *.yaml, or a loaded dataset
|
||||||
|
n: number of anchors
|
||||||
|
img_size: image size used for training
|
||||||
|
thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0
|
||||||
|
gen: generations to evolve anchors using genetic algorithm
|
||||||
|
verbose: print all results
|
||||||
|
|
||||||
|
Return:
|
||||||
|
k: kmeans evolved anchors
|
||||||
|
|
||||||
|
Usage:
|
||||||
|
from utils.autoanchor import *; _ = kmean_anchors()
|
||||||
|
"""
|
||||||
|
thr = 1. / thr
|
||||||
|
prefix = colorstr('autoanchor: ')
|
||||||
|
|
||||||
|
def metric(k, wh): # compute metrics
|
||||||
|
r = wh[:, None] / k[None]
|
||||||
|
x = torch.min(r, 1. / r).min(2)[0] # ratio metric
|
||||||
|
# x = wh_iou(wh, torch.tensor(k)) # iou metric
|
||||||
|
return x, x.max(1)[0] # x, best_x
|
||||||
|
|
||||||
|
def anchor_fitness(k): # mutation fitness
|
||||||
|
_, best = metric(torch.tensor(k, dtype=torch.float32), wh)
|
||||||
|
return (best * (best > thr).float()).mean() # fitness
|
||||||
|
|
||||||
|
def print_results(k):
|
||||||
|
k = k[np.argsort(k.prod(1))] # sort small to large
|
||||||
|
x, best = metric(k, wh0)
|
||||||
|
bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr
|
||||||
|
print(f'{prefix}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr')
|
||||||
|
print(f'{prefix}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, '
|
||||||
|
f'past_thr={x[x > thr].mean():.3f}-mean: ', end='')
|
||||||
|
for i, x in enumerate(k):
|
||||||
|
print('%i,%i' % (round(x[0]), round(x[1])), end=', ' if i < len(k) - 1 else '\n') # use in *.cfg
|
||||||
|
return k
|
||||||
|
|
||||||
|
if isinstance(path, str): # *.yaml file
|
||||||
|
with open(path) as f:
|
||||||
|
data_dict = yaml.load(f, Loader=yaml.SafeLoader) # model dict
|
||||||
|
from utils.datasets import LoadImagesAndLabels
|
||||||
|
dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True)
|
||||||
|
else:
|
||||||
|
dataset = path # dataset
|
||||||
|
|
||||||
|
# Get label wh
|
||||||
|
shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)
|
||||||
|
wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh
|
||||||
|
|
||||||
|
# Filter
|
||||||
|
i = (wh0 < 3.0).any(1).sum()
|
||||||
|
if i:
|
||||||
|
print(f'{prefix}WARNING: Extremely small objects found. {i} of {len(wh0)} labels are < 3 pixels in size.')
|
||||||
|
wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels
|
||||||
|
# wh = wh * (np.random.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1
|
||||||
|
|
||||||
|
# Kmeans calculation
|
||||||
|
print(f'{prefix}Running kmeans for {n} anchors on {len(wh)} points...')
|
||||||
|
s = wh.std(0) # sigmas for whitening
|
||||||
|
k, dist = kmeans(wh / s, n, iter=30) # points, mean distance
|
||||||
|
assert len(k) == n, print(f'{prefix}ERROR: scipy.cluster.vq.kmeans requested {n} points but returned only {len(k)}')
|
||||||
|
k *= s
|
||||||
|
wh = torch.tensor(wh, dtype=torch.float32) # filtered
|
||||||
|
wh0 = torch.tensor(wh0, dtype=torch.float32) # unfiltered
|
||||||
|
k = print_results(k)
|
||||||
|
|
||||||
|
# Plot
|
||||||
|
# k, d = [None] * 20, [None] * 20
|
||||||
|
# for i in tqdm(range(1, 21)):
|
||||||
|
# k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance
|
||||||
|
# fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True)
|
||||||
|
# ax = ax.ravel()
|
||||||
|
# ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.')
|
||||||
|
# fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh
|
||||||
|
# ax[0].hist(wh[wh[:, 0]<100, 0],400)
|
||||||
|
# ax[1].hist(wh[wh[:, 1]<100, 1],400)
|
||||||
|
# fig.savefig('wh.png', dpi=200)
|
||||||
|
|
||||||
|
# Evolve
|
||||||
|
npr = np.random
|
||||||
|
f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma
|
||||||
|
pbar = tqdm(range(gen), desc=f'{prefix}Evolving anchors with Genetic Algorithm:') # progress bar
|
||||||
|
for _ in pbar:
|
||||||
|
v = np.ones(sh)
|
||||||
|
while (v == 1).all(): # mutate until a change occurs (prevent duplicates)
|
||||||
|
v = ((npr.random(sh) < mp) * npr.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)
|
||||||
|
kg = (k.copy() * v).clip(min=2.0)
|
||||||
|
fg = anchor_fitness(kg)
|
||||||
|
if fg > f:
|
||||||
|
f, k = fg, kg.copy()
|
||||||
|
pbar.desc = f'{prefix}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}'
|
||||||
|
if verbose:
|
||||||
|
print_results(k)
|
||||||
|
|
||||||
|
return print_results(k)
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
kmean_anchors()
|
0
utils/aws/__init__.py
Executable file
0
utils/aws/__init__.py
Executable file
26
utils/aws/mime.sh
Executable file
26
utils/aws/mime.sh
Executable file
@ -0,0 +1,26 @@
|
|||||||
|
# AWS EC2 instance startup 'MIME' script https://aws.amazon.com/premiumsupport/knowledge-center/execute-user-data-ec2/
|
||||||
|
# This script will run on every instance restart, not only on first start
|
||||||
|
# --- DO NOT COPY ABOVE COMMENTS WHEN PASTING INTO USERDATA ---
|
||||||
|
|
||||||
|
Content-Type: multipart/mixed; boundary="//"
|
||||||
|
MIME-Version: 1.0
|
||||||
|
|
||||||
|
--//
|
||||||
|
Content-Type: text/cloud-config; charset="us-ascii"
|
||||||
|
MIME-Version: 1.0
|
||||||
|
Content-Transfer-Encoding: 7bit
|
||||||
|
Content-Disposition: attachment; filename="cloud-config.txt"
|
||||||
|
|
||||||
|
#cloud-config
|
||||||
|
cloud_final_modules:
|
||||||
|
- [scripts-user, always]
|
||||||
|
|
||||||
|
--//
|
||||||
|
Content-Type: text/x-shellscript; charset="us-ascii"
|
||||||
|
MIME-Version: 1.0
|
||||||
|
Content-Transfer-Encoding: 7bit
|
||||||
|
Content-Disposition: attachment; filename="userdata.txt"
|
||||||
|
|
||||||
|
#!/bin/bash
|
||||||
|
# --- paste contents of userdata.sh here ---
|
||||||
|
--//
|
37
utils/aws/resume.py
Executable file
37
utils/aws/resume.py
Executable file
@ -0,0 +1,37 @@
|
|||||||
|
# Resume all interrupted trainings in yolov5/ dir including DDP trainings
|
||||||
|
# Usage: $ python utils/aws/resume.py
|
||||||
|
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import yaml
|
||||||
|
|
||||||
|
sys.path.append('./') # to run '$ python *.py' files in subdirectories
|
||||||
|
|
||||||
|
port = 0 # --master_port
|
||||||
|
path = Path('').resolve()
|
||||||
|
for last in path.rglob('*/**/last.pt'):
|
||||||
|
ckpt = torch.load(last)
|
||||||
|
if ckpt['optimizer'] is None:
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Load opt.yaml
|
||||||
|
with open(last.parent.parent / 'opt.yaml') as f:
|
||||||
|
opt = yaml.load(f, Loader=yaml.SafeLoader)
|
||||||
|
|
||||||
|
# Get device count
|
||||||
|
d = opt['device'].split(',') # devices
|
||||||
|
nd = len(d) # number of devices
|
||||||
|
ddp = nd > 1 or (nd == 0 and torch.cuda.device_count() > 1) # distributed data parallel
|
||||||
|
|
||||||
|
if ddp: # multi-GPU
|
||||||
|
port += 1
|
||||||
|
cmd = f'python -m torch.distributed.launch --nproc_per_node {nd} --master_port {port} train.py --resume {last}'
|
||||||
|
else: # single-GPU
|
||||||
|
cmd = f'python train.py --resume {last}'
|
||||||
|
|
||||||
|
cmd += ' > /dev/null 2>&1 &' # redirect output to dev/null and run in daemon thread
|
||||||
|
print(cmd)
|
||||||
|
os.system(cmd)
|
27
utils/aws/userdata.sh
Executable file
27
utils/aws/userdata.sh
Executable file
@ -0,0 +1,27 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
# AWS EC2 instance startup script https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html
|
||||||
|
# This script will run only once on first instance start (for a re-start script see mime.sh)
|
||||||
|
# /home/ubuntu (ubuntu) or /home/ec2-user (amazon-linux) is working dir
|
||||||
|
# Use >300 GB SSD
|
||||||
|
|
||||||
|
cd home/ubuntu
|
||||||
|
if [ ! -d yolov5 ]; then
|
||||||
|
echo "Running first-time script." # install dependencies, download COCO, pull Docker
|
||||||
|
git clone https://github.com/ultralytics/yolov5 && sudo chmod -R 777 yolov5
|
||||||
|
cd yolov5
|
||||||
|
bash data/scripts/get_coco.sh && echo "Data done." &
|
||||||
|
sudo docker pull ultralytics/yolov5:latest && echo "Docker done." &
|
||||||
|
python -m pip install --upgrade pip && pip install -r requirements.txt && python detect.py && echo "Requirements done." &
|
||||||
|
wait && echo "All tasks done." # finish background tasks
|
||||||
|
else
|
||||||
|
echo "Running re-start script." # resume interrupted runs
|
||||||
|
i=0
|
||||||
|
list=$(sudo docker ps -qa) # container list i.e. $'one\ntwo\nthree\nfour'
|
||||||
|
while IFS= read -r id; do
|
||||||
|
((i++))
|
||||||
|
echo "restarting container $i: $id"
|
||||||
|
sudo docker start $id
|
||||||
|
# sudo docker exec -it $id python train.py --resume # single-GPU
|
||||||
|
sudo docker exec -d $id python utils/aws/resume.py # multi-scenario
|
||||||
|
done <<<"$list"
|
||||||
|
fi
|
1057
utils/datasets.py
Executable file
1057
utils/datasets.py
Executable file
File diff suppressed because it is too large
Load Diff
598
utils/general.py
Executable file
598
utils/general.py
Executable file
@ -0,0 +1,598 @@
|
|||||||
|
# YOLOv5 general utils
|
||||||
|
|
||||||
|
import glob
|
||||||
|
import logging
|
||||||
|
import math
|
||||||
|
import os
|
||||||
|
import platform
|
||||||
|
import random
|
||||||
|
import re
|
||||||
|
import subprocess
|
||||||
|
import time
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import cv2
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
import torchvision
|
||||||
|
import yaml
|
||||||
|
|
||||||
|
from utils.google_utils import gsutil_getsize
|
||||||
|
from utils.metrics import fitness
|
||||||
|
from utils.torch_utils import init_torch_seeds
|
||||||
|
|
||||||
|
# Settings
|
||||||
|
torch.set_printoptions(linewidth=320, precision=5, profile='long')
|
||||||
|
np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5
|
||||||
|
cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader)
|
||||||
|
os.environ['NUMEXPR_MAX_THREADS'] = str(min(os.cpu_count(), 8)) # NumExpr max threads
|
||||||
|
|
||||||
|
|
||||||
|
def set_logging(rank=-1):
|
||||||
|
logging.basicConfig(
|
||||||
|
format="%(message)s",
|
||||||
|
level=logging.INFO if rank in [-1, 0] else logging.WARN)
|
||||||
|
|
||||||
|
|
||||||
|
def init_seeds(seed=0):
|
||||||
|
# Initialize random number generator (RNG) seeds
|
||||||
|
random.seed(seed)
|
||||||
|
np.random.seed(seed)
|
||||||
|
init_torch_seeds(seed)
|
||||||
|
|
||||||
|
|
||||||
|
def get_latest_run(search_dir='.'):
|
||||||
|
# Return path to most recent 'last.pt' in /runs (i.e. to --resume from)
|
||||||
|
last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True)
|
||||||
|
return max(last_list, key=os.path.getctime) if last_list else ''
|
||||||
|
|
||||||
|
|
||||||
|
def isdocker():
|
||||||
|
# Is environment a Docker container
|
||||||
|
return Path('/workspace').exists() # or Path('/.dockerenv').exists()
|
||||||
|
|
||||||
|
|
||||||
|
def emojis(str=''):
|
||||||
|
# Return platform-dependent emoji-safe version of string
|
||||||
|
return str.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else str
|
||||||
|
|
||||||
|
|
||||||
|
def check_online():
|
||||||
|
# Check internet connectivity
|
||||||
|
import socket
|
||||||
|
try:
|
||||||
|
socket.create_connection(("1.1.1.1", 443), 5) # check host accesability
|
||||||
|
return True
|
||||||
|
except OSError:
|
||||||
|
return False
|
||||||
|
|
||||||
|
|
||||||
|
def check_git_status():
|
||||||
|
# Recommend 'git pull' if code is out of date
|
||||||
|
print(colorstr('github: '), end='')
|
||||||
|
try:
|
||||||
|
assert Path('.git').exists(), 'skipping check (not a git repository)'
|
||||||
|
assert not isdocker(), 'skipping check (Docker image)'
|
||||||
|
assert check_online(), 'skipping check (offline)'
|
||||||
|
|
||||||
|
cmd = 'git fetch && git config --get remote.origin.url'
|
||||||
|
url = subprocess.check_output(cmd, shell=True).decode().strip().rstrip('.git') # github repo url
|
||||||
|
branch = subprocess.check_output('git rev-parse --abbrev-ref HEAD', shell=True).decode().strip() # checked out
|
||||||
|
n = int(subprocess.check_output(f'git rev-list {branch}..origin/master --count', shell=True)) # commits behind
|
||||||
|
if n > 0:
|
||||||
|
s = f"⚠️ WARNING: code is out of date by {n} commit{'s' * (n > 1)}. " \
|
||||||
|
f"Use 'git pull' to update or 'git clone {url}' to download latest."
|
||||||
|
else:
|
||||||
|
s = f'up to date with {url} ✅'
|
||||||
|
print(emojis(s)) # emoji-safe
|
||||||
|
except Exception as e:
|
||||||
|
print(e)
|
||||||
|
|
||||||
|
|
||||||
|
def check_requirements(file='requirements.txt', exclude=()):
|
||||||
|
# Check installed dependencies meet requirements
|
||||||
|
import pkg_resources as pkg
|
||||||
|
prefix = colorstr('red', 'bold', 'requirements:')
|
||||||
|
file = Path(file)
|
||||||
|
if not file.exists():
|
||||||
|
print(f"{prefix} {file.resolve()} not found, check failed.")
|
||||||
|
return
|
||||||
|
|
||||||
|
n = 0 # number of packages updates
|
||||||
|
requirements = [f'{x.name}{x.specifier}' for x in pkg.parse_requirements(file.open()) if x.name not in exclude]
|
||||||
|
for r in requirements:
|
||||||
|
try:
|
||||||
|
pkg.require(r)
|
||||||
|
except Exception as e: # DistributionNotFound or VersionConflict if requirements not met
|
||||||
|
n += 1
|
||||||
|
print(f"{prefix} {e.req} not found and is required by YOLOv5, attempting auto-update...")
|
||||||
|
print(subprocess.check_output(f"pip install '{e.req}'", shell=True).decode())
|
||||||
|
|
||||||
|
if n: # if packages updated
|
||||||
|
s = f"{prefix} {n} package{'s' * (n > 1)} updated per {file.resolve()}\n" \
|
||||||
|
f"{prefix} ⚠️ {colorstr('bold', 'Restart runtime or rerun command for updates to take effect')}\n"
|
||||||
|
print(emojis(s)) # emoji-safe
|
||||||
|
|
||||||
|
|
||||||
|
def check_img_size(img_size, s=32):
|
||||||
|
# Verify img_size is a multiple of stride s
|
||||||
|
new_size = make_divisible(img_size, int(s)) # ceil gs-multiple
|
||||||
|
if new_size != img_size:
|
||||||
|
print('WARNING: --img-size %g must be multiple of max stride %g, updating to %g' % (img_size, s, new_size))
|
||||||
|
return new_size
|
||||||
|
|
||||||
|
|
||||||
|
def check_imshow():
|
||||||
|
# Check if environment supports image displays
|
||||||
|
try:
|
||||||
|
assert not isdocker(), 'cv2.imshow() is disabled in Docker environments'
|
||||||
|
cv2.imshow('test', np.zeros((1, 1, 3)))
|
||||||
|
cv2.waitKey(1)
|
||||||
|
cv2.destroyAllWindows()
|
||||||
|
cv2.waitKey(1)
|
||||||
|
return True
|
||||||
|
except Exception as e:
|
||||||
|
print(f'WARNING: Environment does not support cv2.imshow() or PIL Image.show() image displays\n{e}')
|
||||||
|
return False
|
||||||
|
|
||||||
|
|
||||||
|
def check_file(file):
|
||||||
|
# Search for file if not found
|
||||||
|
if os.path.isfile(file) or file == '':
|
||||||
|
return file
|
||||||
|
else:
|
||||||
|
files = glob.glob('./**/' + file, recursive=True) # find file
|
||||||
|
assert len(files), 'File Not Found: %s' % file # assert file was found
|
||||||
|
assert len(files) == 1, "Multiple files match '%s', specify exact path: %s" % (file, files) # assert unique
|
||||||
|
return files[0] # return file
|
||||||
|
|
||||||
|
|
||||||
|
def check_dataset(dict):
|
||||||
|
# Download dataset if not found locally
|
||||||
|
val, s = dict.get('val'), dict.get('download')
|
||||||
|
if val and len(val):
|
||||||
|
val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path
|
||||||
|
if not all(x.exists() for x in val):
|
||||||
|
print('\nWARNING: Dataset not found, nonexistent paths: %s' % [str(x) for x in val if not x.exists()])
|
||||||
|
if s and len(s): # download script
|
||||||
|
print('Downloading %s ...' % s)
|
||||||
|
if s.startswith('http') and s.endswith('.zip'): # URL
|
||||||
|
f = Path(s).name # filename
|
||||||
|
torch.hub.download_url_to_file(s, f)
|
||||||
|
r = os.system('unzip -q %s -d ../ && rm %s' % (f, f)) # unzip
|
||||||
|
else: # bash script
|
||||||
|
r = os.system(s)
|
||||||
|
print('Dataset autodownload %s\n' % ('success' if r == 0 else 'failure')) # analyze return value
|
||||||
|
else:
|
||||||
|
raise Exception('Dataset not found.')
|
||||||
|
|
||||||
|
|
||||||
|
def make_divisible(x, divisor):
|
||||||
|
# Returns x evenly divisible by divisor
|
||||||
|
return math.ceil(x / divisor) * divisor
|
||||||
|
|
||||||
|
|
||||||
|
def clean_str(s):
|
||||||
|
# Cleans a string by replacing special characters with underscore _
|
||||||
|
return re.sub(pattern="[|@#!¡·$€%&()=?¿^*;:,¨´><+]", repl="_", string=s)
|
||||||
|
|
||||||
|
|
||||||
|
def one_cycle(y1=0.0, y2=1.0, steps=100):
|
||||||
|
# lambda function for sinusoidal ramp from y1 to y2
|
||||||
|
return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1
|
||||||
|
|
||||||
|
|
||||||
|
def colorstr(*input):
|
||||||
|
# Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e. colorstr('blue', 'hello world')
|
||||||
|
*args, string = input if len(input) > 1 else ('blue', 'bold', input[0]) # color arguments, string
|
||||||
|
colors = {'black': '\033[30m', # basic colors
|
||||||
|
'red': '\033[31m',
|
||||||
|
'green': '\033[32m',
|
||||||
|
'yellow': '\033[33m',
|
||||||
|
'blue': '\033[34m',
|
||||||
|
'magenta': '\033[35m',
|
||||||
|
'cyan': '\033[36m',
|
||||||
|
'white': '\033[37m',
|
||||||
|
'bright_black': '\033[90m', # bright colors
|
||||||
|
'bright_red': '\033[91m',
|
||||||
|
'bright_green': '\033[92m',
|
||||||
|
'bright_yellow': '\033[93m',
|
||||||
|
'bright_blue': '\033[94m',
|
||||||
|
'bright_magenta': '\033[95m',
|
||||||
|
'bright_cyan': '\033[96m',
|
||||||
|
'bright_white': '\033[97m',
|
||||||
|
'end': '\033[0m', # misc
|
||||||
|
'bold': '\033[1m',
|
||||||
|
'underline': '\033[4m'}
|
||||||
|
return ''.join(colors[x] for x in args) + f'{string}' + colors['end']
|
||||||
|
|
||||||
|
|
||||||
|
def labels_to_class_weights(labels, nc=80):
|
||||||
|
# Get class weights (inverse frequency) from training labels
|
||||||
|
if labels[0] is None: # no labels loaded
|
||||||
|
return torch.Tensor()
|
||||||
|
|
||||||
|
labels = np.concatenate(labels, 0) # labels.shape = (866643, 5) for COCO
|
||||||
|
classes = labels[:, 0].astype(np.int) # labels = [class xywh]
|
||||||
|
weights = np.bincount(classes, minlength=nc) # occurrences per class
|
||||||
|
|
||||||
|
# Prepend gridpoint count (for uCE training)
|
||||||
|
# gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum() # gridpoints per image
|
||||||
|
# weights = np.hstack([gpi * len(labels) - weights.sum() * 9, weights * 9]) ** 0.5 # prepend gridpoints to start
|
||||||
|
|
||||||
|
weights[weights == 0] = 1 # replace empty bins with 1
|
||||||
|
weights = 1 / weights # number of targets per class
|
||||||
|
weights /= weights.sum() # normalize
|
||||||
|
return torch.from_numpy(weights)
|
||||||
|
|
||||||
|
|
||||||
|
def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)):
|
||||||
|
# Produces image weights based on class_weights and image contents
|
||||||
|
class_counts = np.array([np.bincount(x[:, 0].astype(np.int), minlength=nc) for x in labels])
|
||||||
|
image_weights = (class_weights.reshape(1, nc) * class_counts).sum(1)
|
||||||
|
# index = random.choices(range(n), weights=image_weights, k=1) # weight image sample
|
||||||
|
return image_weights
|
||||||
|
|
||||||
|
|
||||||
|
def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper)
|
||||||
|
# https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
|
||||||
|
# a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n')
|
||||||
|
# b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n')
|
||||||
|
# x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco
|
||||||
|
# x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet
|
||||||
|
x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34,
|
||||||
|
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
|
||||||
|
64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
def xyxy2xywh(x):
|
||||||
|
# Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
|
||||||
|
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
||||||
|
y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center
|
||||||
|
y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center
|
||||||
|
y[:, 2] = x[:, 2] - x[:, 0] # width
|
||||||
|
y[:, 3] = x[:, 3] - x[:, 1] # height
|
||||||
|
return y
|
||||||
|
|
||||||
|
|
||||||
|
def xywh2xyxy(x):
|
||||||
|
# Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
|
||||||
|
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
||||||
|
y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
|
||||||
|
y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
|
||||||
|
y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
|
||||||
|
y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
|
||||||
|
return y
|
||||||
|
|
||||||
|
|
||||||
|
def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
|
||||||
|
# Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
|
||||||
|
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
||||||
|
y[:, 0] = w * (x[:, 0] - x[:, 2] / 2) + padw # top left x
|
||||||
|
y[:, 1] = h * (x[:, 1] - x[:, 3] / 2) + padh # top left y
|
||||||
|
y[:, 2] = w * (x[:, 0] + x[:, 2] / 2) + padw # bottom right x
|
||||||
|
y[:, 3] = h * (x[:, 1] + x[:, 3] / 2) + padh # bottom right y
|
||||||
|
return y
|
||||||
|
|
||||||
|
|
||||||
|
def xyn2xy(x, w=640, h=640, padw=0, padh=0):
|
||||||
|
# Convert normalized segments into pixel segments, shape (n,2)
|
||||||
|
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
||||||
|
y[:, 0] = w * x[:, 0] + padw # top left x
|
||||||
|
y[:, 1] = h * x[:, 1] + padh # top left y
|
||||||
|
return y
|
||||||
|
|
||||||
|
|
||||||
|
def segment2box(segment, width=640, height=640):
|
||||||
|
# Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy)
|
||||||
|
x, y = segment.T # segment xy
|
||||||
|
inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height)
|
||||||
|
x, y, = x[inside], y[inside]
|
||||||
|
return np.array([x.min(), y.min(), x.max(), y.max()]) if any(x) else np.zeros((1, 4)) # xyxy
|
||||||
|
|
||||||
|
|
||||||
|
def segments2boxes(segments):
|
||||||
|
# Convert segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh)
|
||||||
|
boxes = []
|
||||||
|
for s in segments:
|
||||||
|
x, y = s.T # segment xy
|
||||||
|
boxes.append([x.min(), y.min(), x.max(), y.max()]) # cls, xyxy
|
||||||
|
return xyxy2xywh(np.array(boxes)) # cls, xywh
|
||||||
|
|
||||||
|
|
||||||
|
def resample_segments(segments, n=1000):
|
||||||
|
# Up-sample an (n,2) segment
|
||||||
|
for i, s in enumerate(segments):
|
||||||
|
x = np.linspace(0, len(s) - 1, n)
|
||||||
|
xp = np.arange(len(s))
|
||||||
|
segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)]).reshape(2, -1).T # segment xy
|
||||||
|
return segments
|
||||||
|
|
||||||
|
|
||||||
|
def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
|
||||||
|
# Rescale coords (xyxy) from img1_shape to img0_shape
|
||||||
|
if ratio_pad is None: # calculate from img0_shape
|
||||||
|
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
|
||||||
|
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
|
||||||
|
else:
|
||||||
|
gain = ratio_pad[0][0]
|
||||||
|
pad = ratio_pad[1]
|
||||||
|
|
||||||
|
coords[:, [0, 2]] -= pad[0] # x padding
|
||||||
|
coords[:, [1, 3]] -= pad[1] # y padding
|
||||||
|
coords[:, :4] /= gain
|
||||||
|
clip_coords(coords, img0_shape)
|
||||||
|
return coords
|
||||||
|
|
||||||
|
|
||||||
|
def clip_coords(boxes, img_shape):
|
||||||
|
# Clip bounding xyxy bounding boxes to image shape (height, width)
|
||||||
|
boxes[:, 0].clamp_(0, img_shape[1]) # x1
|
||||||
|
boxes[:, 1].clamp_(0, img_shape[0]) # y1
|
||||||
|
boxes[:, 2].clamp_(0, img_shape[1]) # x2
|
||||||
|
boxes[:, 3].clamp_(0, img_shape[0]) # y2
|
||||||
|
|
||||||
|
|
||||||
|
def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7):
|
||||||
|
# Returns the IoU of box1 to box2. box1 is 4, box2 is nx4
|
||||||
|
box2 = box2.T
|
||||||
|
|
||||||
|
# Get the coordinates of bounding boxes
|
||||||
|
if x1y1x2y2: # x1, y1, x2, y2 = box1
|
||||||
|
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
|
||||||
|
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
|
||||||
|
else: # transform from xywh to xyxy
|
||||||
|
b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
|
||||||
|
b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
|
||||||
|
b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
|
||||||
|
b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2
|
||||||
|
|
||||||
|
# Intersection area
|
||||||
|
inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
|
||||||
|
(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
|
||||||
|
|
||||||
|
# Union Area
|
||||||
|
w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
|
||||||
|
w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
|
||||||
|
union = w1 * h1 + w2 * h2 - inter + eps
|
||||||
|
|
||||||
|
iou = inter / union
|
||||||
|
if GIoU or DIoU or CIoU:
|
||||||
|
cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width
|
||||||
|
ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height
|
||||||
|
if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
|
||||||
|
c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared
|
||||||
|
rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 +
|
||||||
|
(b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center distance squared
|
||||||
|
if DIoU:
|
||||||
|
return iou - rho2 / c2 # DIoU
|
||||||
|
elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
|
||||||
|
v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
|
||||||
|
with torch.no_grad():
|
||||||
|
alpha = v / (v - iou + (1 + eps))
|
||||||
|
return iou - (rho2 / c2 + v * alpha) # CIoU
|
||||||
|
else: # GIoU https://arxiv.org/pdf/1902.09630.pdf
|
||||||
|
c_area = cw * ch + eps # convex area
|
||||||
|
return iou - (c_area - union) / c_area # GIoU
|
||||||
|
else:
|
||||||
|
return iou # IoU
|
||||||
|
|
||||||
|
|
||||||
|
def box_iou(box1, box2):
|
||||||
|
# https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
|
||||||
|
"""
|
||||||
|
Return intersection-over-union (Jaccard index) of boxes.
|
||||||
|
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
|
||||||
|
Arguments:
|
||||||
|
box1 (Tensor[N, 4])
|
||||||
|
box2 (Tensor[M, 4])
|
||||||
|
Returns:
|
||||||
|
iou (Tensor[N, M]): the NxM matrix containing the pairwise
|
||||||
|
IoU values for every element in boxes1 and boxes2
|
||||||
|
"""
|
||||||
|
|
||||||
|
def box_area(box):
|
||||||
|
# box = 4xn
|
||||||
|
return (box[2] - box[0]) * (box[3] - box[1])
|
||||||
|
|
||||||
|
area1 = box_area(box1.T)
|
||||||
|
area2 = box_area(box2.T)
|
||||||
|
|
||||||
|
# inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
|
||||||
|
inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
|
||||||
|
return inter / (area1[:, None] + area2 - inter) # iou = inter / (area1 + area2 - inter)
|
||||||
|
|
||||||
|
|
||||||
|
def wh_iou(wh1, wh2):
|
||||||
|
# Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2
|
||||||
|
wh1 = wh1[:, None] # [N,1,2]
|
||||||
|
wh2 = wh2[None] # [1,M,2]
|
||||||
|
inter = torch.min(wh1, wh2).prod(2) # [N,M]
|
||||||
|
return inter / (wh1.prod(2) + wh2.prod(2) - inter) # iou = inter / (area1 + area2 - inter)
|
||||||
|
|
||||||
|
|
||||||
|
def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False,
|
||||||
|
labels=()):
|
||||||
|
"""Runs Non-Maximum Suppression (NMS) on inference results
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
list of detections, on (n,6) tensor per image [xyxy, conf, cls]
|
||||||
|
"""
|
||||||
|
|
||||||
|
nc = prediction.shape[2] - 5 # number of classes
|
||||||
|
xc = prediction[..., 4] > conf_thres # candidates
|
||||||
|
|
||||||
|
# Settings
|
||||||
|
min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height
|
||||||
|
max_det = 300 # maximum number of detections per image
|
||||||
|
max_nms = 30000 # maximum number of boxes into torchvision.ops.nms()
|
||||||
|
time_limit = 10.0 # seconds to quit after
|
||||||
|
redundant = True # require redundant detections
|
||||||
|
multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img)
|
||||||
|
merge = False # use merge-NMS
|
||||||
|
|
||||||
|
t = time.time()
|
||||||
|
output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0]
|
||||||
|
for xi, x in enumerate(prediction): # image index, image inference
|
||||||
|
# Apply constraints
|
||||||
|
# x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
|
||||||
|
x = x[xc[xi]] # confidence
|
||||||
|
|
||||||
|
# Cat apriori labels if autolabelling
|
||||||
|
if labels and len(labels[xi]):
|
||||||
|
l = labels[xi]
|
||||||
|
v = torch.zeros((len(l), nc + 5), device=x.device)
|
||||||
|
v[:, :4] = l[:, 1:5] # box
|
||||||
|
v[:, 4] = 1.0 # conf
|
||||||
|
v[range(len(l)), l[:, 0].long() + 5] = 1.0 # cls
|
||||||
|
x = torch.cat((x, v), 0)
|
||||||
|
|
||||||
|
# If none remain process next image
|
||||||
|
if not x.shape[0]:
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Compute conf
|
||||||
|
x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf
|
||||||
|
|
||||||
|
# Box (center x, center y, width, height) to (x1, y1, x2, y2)
|
||||||
|
box = xywh2xyxy(x[:, :4])
|
||||||
|
|
||||||
|
# Detections matrix nx6 (xyxy, conf, cls)
|
||||||
|
if multi_label:
|
||||||
|
i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
|
||||||
|
x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
|
||||||
|
else: # best class only
|
||||||
|
conf, j = x[:, 5:].max(1, keepdim=True)
|
||||||
|
x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]
|
||||||
|
|
||||||
|
# Filter by class
|
||||||
|
if classes is not None:
|
||||||
|
x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
|
||||||
|
|
||||||
|
# Apply finite constraint
|
||||||
|
# if not torch.isfinite(x).all():
|
||||||
|
# x = x[torch.isfinite(x).all(1)]
|
||||||
|
|
||||||
|
# Check shape
|
||||||
|
n = x.shape[0] # number of boxes
|
||||||
|
if not n: # no boxes
|
||||||
|
continue
|
||||||
|
elif n > max_nms: # excess boxes
|
||||||
|
x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence
|
||||||
|
|
||||||
|
# Batched NMS
|
||||||
|
c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
|
||||||
|
boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
|
||||||
|
i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
|
||||||
|
if i.shape[0] > max_det: # limit detections
|
||||||
|
i = i[:max_det]
|
||||||
|
if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
|
||||||
|
# update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
|
||||||
|
iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
|
||||||
|
weights = iou * scores[None] # box weights
|
||||||
|
x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
|
||||||
|
if redundant:
|
||||||
|
i = i[iou.sum(1) > 1] # require redundancy
|
||||||
|
|
||||||
|
output[xi] = x[i]
|
||||||
|
if (time.time() - t) > time_limit:
|
||||||
|
print(f'WARNING: NMS time limit {time_limit}s exceeded')
|
||||||
|
break # time limit exceeded
|
||||||
|
|
||||||
|
return output
|
||||||
|
|
||||||
|
|
||||||
|
def strip_optimizer(f='best.pt', s=''): # from utils.general import *; strip_optimizer()
|
||||||
|
# Strip optimizer from 'f' to finalize training, optionally save as 's'
|
||||||
|
x = torch.load(f, map_location=torch.device('cpu'))
|
||||||
|
if x.get('ema'):
|
||||||
|
x['model'] = x['ema'] # replace model with ema
|
||||||
|
for k in 'optimizer', 'training_results', 'wandb_id', 'ema', 'updates': # keys
|
||||||
|
x[k] = None
|
||||||
|
x['epoch'] = -1
|
||||||
|
x['model'].half() # to FP16
|
||||||
|
for p in x['model'].parameters():
|
||||||
|
p.requires_grad = False
|
||||||
|
torch.save(x, s or f)
|
||||||
|
mb = os.path.getsize(s or f) / 1E6 # filesize
|
||||||
|
print(f"Optimizer stripped from {f},{(' saved as %s,' % s) if s else ''} {mb:.1f}MB")
|
||||||
|
|
||||||
|
|
||||||
|
def print_mutation(hyp, results, yaml_file='hyp_evolved.yaml', bucket=''):
|
||||||
|
# Print mutation results to evolve.txt (for use with train.py --evolve)
|
||||||
|
a = '%10s' * len(hyp) % tuple(hyp.keys()) # hyperparam keys
|
||||||
|
b = '%10.3g' * len(hyp) % tuple(hyp.values()) # hyperparam values
|
||||||
|
c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3)
|
||||||
|
print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c))
|
||||||
|
|
||||||
|
if bucket:
|
||||||
|
url = 'gs://%s/evolve.txt' % bucket
|
||||||
|
if gsutil_getsize(url) > (os.path.getsize('evolve.txt') if os.path.exists('evolve.txt') else 0):
|
||||||
|
os.system('gsutil cp %s .' % url) # download evolve.txt if larger than local
|
||||||
|
|
||||||
|
with open('evolve.txt', 'a') as f: # append result
|
||||||
|
f.write(c + b + '\n')
|
||||||
|
x = np.unique(np.loadtxt('evolve.txt', ndmin=2), axis=0) # load unique rows
|
||||||
|
x = x[np.argsort(-fitness(x))] # sort
|
||||||
|
np.savetxt('evolve.txt', x, '%10.3g') # save sort by fitness
|
||||||
|
|
||||||
|
# Save yaml
|
||||||
|
for i, k in enumerate(hyp.keys()):
|
||||||
|
hyp[k] = float(x[0, i + 7])
|
||||||
|
with open(yaml_file, 'w') as f:
|
||||||
|
results = tuple(x[0, :7])
|
||||||
|
c = '%10.4g' * len(results) % results # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3)
|
||||||
|
f.write('# Hyperparameter Evolution Results\n# Generations: %g\n# Metrics: ' % len(x) + c + '\n\n')
|
||||||
|
yaml.dump(hyp, f, sort_keys=False)
|
||||||
|
|
||||||
|
if bucket:
|
||||||
|
os.system('gsutil cp evolve.txt %s gs://%s' % (yaml_file, bucket)) # upload
|
||||||
|
|
||||||
|
|
||||||
|
def apply_classifier(x, model, img, im0):
|
||||||
|
# applies a second stage classifier to yolo outputs
|
||||||
|
im0 = [im0] if isinstance(im0, np.ndarray) else im0
|
||||||
|
for i, d in enumerate(x): # per image
|
||||||
|
if d is not None and len(d):
|
||||||
|
d = d.clone()
|
||||||
|
|
||||||
|
# Reshape and pad cutouts
|
||||||
|
b = xyxy2xywh(d[:, :4]) # boxes
|
||||||
|
b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # rectangle to square
|
||||||
|
b[:, 2:] = b[:, 2:] * 1.3 + 30 # pad
|
||||||
|
d[:, :4] = xywh2xyxy(b).long()
|
||||||
|
|
||||||
|
# Rescale boxes from img_size to im0 size
|
||||||
|
scale_coords(img.shape[2:], d[:, :4], im0[i].shape)
|
||||||
|
|
||||||
|
# Classes
|
||||||
|
pred_cls1 = d[:, 5].long()
|
||||||
|
ims = []
|
||||||
|
for j, a in enumerate(d): # per item
|
||||||
|
cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])]
|
||||||
|
im = cv2.resize(cutout, (224, 224)) # BGR
|
||||||
|
# cv2.imwrite('test%i.jpg' % j, cutout)
|
||||||
|
|
||||||
|
im = im[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
|
||||||
|
im = np.ascontiguousarray(im, dtype=np.float32) # uint8 to float32
|
||||||
|
im /= 255.0 # 0 - 255 to 0.0 - 1.0
|
||||||
|
ims.append(im)
|
||||||
|
|
||||||
|
pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax(1) # classifier prediction
|
||||||
|
x[i] = x[i][pred_cls1 == pred_cls2] # retain matching class detections
|
||||||
|
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
def increment_path(path, exist_ok=True, sep=''):
|
||||||
|
# Increment path, i.e. runs/exp --> runs/exp{sep}0, runs/exp{sep}1 etc.
|
||||||
|
path = Path(path) # os-agnostic
|
||||||
|
if (path.exists() and exist_ok) or (not path.exists()):
|
||||||
|
return str(path)
|
||||||
|
else:
|
||||||
|
dirs = glob.glob(f"{path}{sep}*") # similar paths
|
||||||
|
matches = [re.search(rf"%s{sep}(\d+)" % path.stem, d) for d in dirs]
|
||||||
|
i = [int(m.groups()[0]) for m in matches if m] # indices
|
||||||
|
n = max(i) + 1 if i else 2 # increment number
|
||||||
|
return f"{path}{sep}{n}" # update path
|
25
utils/google_app_engine/Dockerfile
Executable file
25
utils/google_app_engine/Dockerfile
Executable file
@ -0,0 +1,25 @@
|
|||||||
|
FROM gcr.io/google-appengine/python
|
||||||
|
|
||||||
|
# Create a virtualenv for dependencies. This isolates these packages from
|
||||||
|
# system-level packages.
|
||||||
|
# Use -p python3 or -p python3.7 to select python version. Default is version 2.
|
||||||
|
RUN virtualenv /env -p python3
|
||||||
|
|
||||||
|
# Setting these environment variables are the same as running
|
||||||
|
# source /env/bin/activate.
|
||||||
|
ENV VIRTUAL_ENV /env
|
||||||
|
ENV PATH /env/bin:$PATH
|
||||||
|
|
||||||
|
RUN apt-get update && apt-get install -y python-opencv
|
||||||
|
|
||||||
|
# Copy the application's requirements.txt and run pip to install all
|
||||||
|
# dependencies into the virtualenv.
|
||||||
|
ADD requirements.txt /app/requirements.txt
|
||||||
|
RUN pip install -r /app/requirements.txt
|
||||||
|
|
||||||
|
# Add the application source code.
|
||||||
|
ADD . /app
|
||||||
|
|
||||||
|
# Run a WSGI server to serve the application. gunicorn must be declared as
|
||||||
|
# a dependency in requirements.txt.
|
||||||
|
CMD gunicorn -b :$PORT main:app
|
4
utils/google_app_engine/additional_requirements.txt
Executable file
4
utils/google_app_engine/additional_requirements.txt
Executable file
@ -0,0 +1,4 @@
|
|||||||
|
# add these requirements in your app on top of the existing ones
|
||||||
|
pip==18.1
|
||||||
|
Flask==1.0.2
|
||||||
|
gunicorn==19.9.0
|
14
utils/google_app_engine/app.yaml
Executable file
14
utils/google_app_engine/app.yaml
Executable file
@ -0,0 +1,14 @@
|
|||||||
|
runtime: custom
|
||||||
|
env: flex
|
||||||
|
|
||||||
|
service: yolov5app
|
||||||
|
|
||||||
|
liveness_check:
|
||||||
|
initial_delay_sec: 600
|
||||||
|
|
||||||
|
manual_scaling:
|
||||||
|
instances: 1
|
||||||
|
resources:
|
||||||
|
cpu: 1
|
||||||
|
memory_gb: 4
|
||||||
|
disk_size_gb: 20
|
122
utils/google_utils.py
Executable file
122
utils/google_utils.py
Executable file
@ -0,0 +1,122 @@
|
|||||||
|
# Google utils: https://cloud.google.com/storage/docs/reference/libraries
|
||||||
|
|
||||||
|
import os
|
||||||
|
import platform
|
||||||
|
import subprocess
|
||||||
|
import time
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import requests
|
||||||
|
import torch
|
||||||
|
|
||||||
|
|
||||||
|
def gsutil_getsize(url=''):
|
||||||
|
# gs://bucket/file size https://cloud.google.com/storage/docs/gsutil/commands/du
|
||||||
|
s = subprocess.check_output(f'gsutil du {url}', shell=True).decode('utf-8')
|
||||||
|
return eval(s.split(' ')[0]) if len(s) else 0 # bytes
|
||||||
|
|
||||||
|
|
||||||
|
def attempt_download(file, repo='ultralytics/yolov5'):
|
||||||
|
# Attempt file download if does not exist
|
||||||
|
file = Path(str(file).strip().replace("'", '').lower())
|
||||||
|
|
||||||
|
if not file.exists():
|
||||||
|
try:
|
||||||
|
response = requests.get(f'https://api.github.com/repos/{repo}/releases/latest').json() # github api
|
||||||
|
assets = [x['name'] for x in response['assets']] # release assets, i.e. ['yolov5s.pt', 'yolov5m.pt', ...]
|
||||||
|
tag = response['tag_name'] # i.e. 'v1.0'
|
||||||
|
except: # fallback plan
|
||||||
|
assets = ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']
|
||||||
|
tag = subprocess.check_output('git tag', shell=True).decode().split()[-1]
|
||||||
|
|
||||||
|
name = file.name
|
||||||
|
if name in assets:
|
||||||
|
msg = f'{file} missing, try downloading from https://github.com/{repo}/releases/'
|
||||||
|
redundant = False # second download option
|
||||||
|
try: # GitHub
|
||||||
|
url = f'https://github.com/{repo}/releases/download/{tag}/{name}'
|
||||||
|
print(f'Downloading {url} to {file}...')
|
||||||
|
torch.hub.download_url_to_file(url, file)
|
||||||
|
assert file.exists() and file.stat().st_size > 1E6 # check
|
||||||
|
except Exception as e: # GCP
|
||||||
|
print(f'Download error: {e}')
|
||||||
|
assert redundant, 'No secondary mirror'
|
||||||
|
url = f'https://storage.googleapis.com/{repo}/ckpt/{name}'
|
||||||
|
print(f'Downloading {url} to {file}...')
|
||||||
|
os.system(f'curl -L {url} -o {file}') # torch.hub.download_url_to_file(url, weights)
|
||||||
|
finally:
|
||||||
|
if not file.exists() or file.stat().st_size < 1E6: # check
|
||||||
|
file.unlink(missing_ok=True) # remove partial downloads
|
||||||
|
print(f'ERROR: Download failure: {msg}')
|
||||||
|
print('')
|
||||||
|
return
|
||||||
|
|
||||||
|
|
||||||
|
def gdrive_download(id='16TiPfZj7htmTyhntwcZyEEAejOUxuT6m', file='tmp.zip'):
|
||||||
|
# Downloads a file from Google Drive. from yolov5.utils.google_utils import *; gdrive_download()
|
||||||
|
t = time.time()
|
||||||
|
file = Path(file)
|
||||||
|
cookie = Path('cookie') # gdrive cookie
|
||||||
|
print(f'Downloading https://drive.google.com/uc?export=download&id={id} as {file}... ', end='')
|
||||||
|
file.unlink(missing_ok=True) # remove existing file
|
||||||
|
cookie.unlink(missing_ok=True) # remove existing cookie
|
||||||
|
|
||||||
|
# Attempt file download
|
||||||
|
out = "NUL" if platform.system() == "Windows" else "/dev/null"
|
||||||
|
os.system(f'curl -c ./cookie -s -L "drive.google.com/uc?export=download&id={id}" > {out}')
|
||||||
|
if os.path.exists('cookie'): # large file
|
||||||
|
s = f'curl -Lb ./cookie "drive.google.com/uc?export=download&confirm={get_token()}&id={id}" -o {file}'
|
||||||
|
else: # small file
|
||||||
|
s = f'curl -s -L -o {file} "drive.google.com/uc?export=download&id={id}"'
|
||||||
|
r = os.system(s) # execute, capture return
|
||||||
|
cookie.unlink(missing_ok=True) # remove existing cookie
|
||||||
|
|
||||||
|
# Error check
|
||||||
|
if r != 0:
|
||||||
|
file.unlink(missing_ok=True) # remove partial
|
||||||
|
print('Download error ') # raise Exception('Download error')
|
||||||
|
return r
|
||||||
|
|
||||||
|
# Unzip if archive
|
||||||
|
if file.suffix == '.zip':
|
||||||
|
print('unzipping... ', end='')
|
||||||
|
os.system(f'unzip -q {file}') # unzip
|
||||||
|
file.unlink() # remove zip to free space
|
||||||
|
|
||||||
|
print(f'Done ({time.time() - t:.1f}s)')
|
||||||
|
return r
|
||||||
|
|
||||||
|
|
||||||
|
def get_token(cookie="./cookie"):
|
||||||
|
with open(cookie) as f:
|
||||||
|
for line in f:
|
||||||
|
if "download" in line:
|
||||||
|
return line.split()[-1]
|
||||||
|
return ""
|
||||||
|
|
||||||
|
# def upload_blob(bucket_name, source_file_name, destination_blob_name):
|
||||||
|
# # Uploads a file to a bucket
|
||||||
|
# # https://cloud.google.com/storage/docs/uploading-objects#storage-upload-object-python
|
||||||
|
#
|
||||||
|
# storage_client = storage.Client()
|
||||||
|
# bucket = storage_client.get_bucket(bucket_name)
|
||||||
|
# blob = bucket.blob(destination_blob_name)
|
||||||
|
#
|
||||||
|
# blob.upload_from_filename(source_file_name)
|
||||||
|
#
|
||||||
|
# print('File {} uploaded to {}.'.format(
|
||||||
|
# source_file_name,
|
||||||
|
# destination_blob_name))
|
||||||
|
#
|
||||||
|
#
|
||||||
|
# def download_blob(bucket_name, source_blob_name, destination_file_name):
|
||||||
|
# # Uploads a blob from a bucket
|
||||||
|
# storage_client = storage.Client()
|
||||||
|
# bucket = storage_client.get_bucket(bucket_name)
|
||||||
|
# blob = bucket.blob(source_blob_name)
|
||||||
|
#
|
||||||
|
# blob.download_to_filename(destination_file_name)
|
||||||
|
#
|
||||||
|
# print('Blob {} downloaded to {}.'.format(
|
||||||
|
# source_blob_name,
|
||||||
|
# destination_file_name))
|
216
utils/loss.py
Executable file
216
utils/loss.py
Executable file
@ -0,0 +1,216 @@
|
|||||||
|
# Loss functions
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
|
||||||
|
from utils.general import bbox_iou
|
||||||
|
from utils.torch_utils import is_parallel
|
||||||
|
|
||||||
|
|
||||||
|
def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
|
||||||
|
# return positive, negative label smoothing BCE targets
|
||||||
|
return 1.0 - 0.5 * eps, 0.5 * eps
|
||||||
|
|
||||||
|
|
||||||
|
class BCEBlurWithLogitsLoss(nn.Module):
|
||||||
|
# BCEwithLogitLoss() with reduced missing label effects.
|
||||||
|
def __init__(self, alpha=0.05):
|
||||||
|
super(BCEBlurWithLogitsLoss, self).__init__()
|
||||||
|
self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none') # must be nn.BCEWithLogitsLoss()
|
||||||
|
self.alpha = alpha
|
||||||
|
|
||||||
|
def forward(self, pred, true):
|
||||||
|
loss = self.loss_fcn(pred, true)
|
||||||
|
pred = torch.sigmoid(pred) # prob from logits
|
||||||
|
dx = pred - true # reduce only missing label effects
|
||||||
|
# dx = (pred - true).abs() # reduce missing label and false label effects
|
||||||
|
alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4))
|
||||||
|
loss *= alpha_factor
|
||||||
|
return loss.mean()
|
||||||
|
|
||||||
|
|
||||||
|
class FocalLoss(nn.Module):
|
||||||
|
# Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
|
||||||
|
def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
|
||||||
|
super(FocalLoss, self).__init__()
|
||||||
|
self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
|
||||||
|
self.gamma = gamma
|
||||||
|
self.alpha = alpha
|
||||||
|
self.reduction = loss_fcn.reduction
|
||||||
|
self.loss_fcn.reduction = 'none' # required to apply FL to each element
|
||||||
|
|
||||||
|
def forward(self, pred, true):
|
||||||
|
loss = self.loss_fcn(pred, true)
|
||||||
|
# p_t = torch.exp(-loss)
|
||||||
|
# loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability
|
||||||
|
|
||||||
|
# TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
|
||||||
|
pred_prob = torch.sigmoid(pred) # prob from logits
|
||||||
|
p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
|
||||||
|
alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
|
||||||
|
modulating_factor = (1.0 - p_t) ** self.gamma
|
||||||
|
loss *= alpha_factor * modulating_factor
|
||||||
|
|
||||||
|
if self.reduction == 'mean':
|
||||||
|
return loss.mean()
|
||||||
|
elif self.reduction == 'sum':
|
||||||
|
return loss.sum()
|
||||||
|
else: # 'none'
|
||||||
|
return loss
|
||||||
|
|
||||||
|
|
||||||
|
class QFocalLoss(nn.Module):
|
||||||
|
# Wraps Quality focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
|
||||||
|
def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
|
||||||
|
super(QFocalLoss, self).__init__()
|
||||||
|
self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
|
||||||
|
self.gamma = gamma
|
||||||
|
self.alpha = alpha
|
||||||
|
self.reduction = loss_fcn.reduction
|
||||||
|
self.loss_fcn.reduction = 'none' # required to apply FL to each element
|
||||||
|
|
||||||
|
def forward(self, pred, true):
|
||||||
|
loss = self.loss_fcn(pred, true)
|
||||||
|
|
||||||
|
pred_prob = torch.sigmoid(pred) # prob from logits
|
||||||
|
alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
|
||||||
|
modulating_factor = torch.abs(true - pred_prob) ** self.gamma
|
||||||
|
loss *= alpha_factor * modulating_factor
|
||||||
|
|
||||||
|
if self.reduction == 'mean':
|
||||||
|
return loss.mean()
|
||||||
|
elif self.reduction == 'sum':
|
||||||
|
return loss.sum()
|
||||||
|
else: # 'none'
|
||||||
|
return loss
|
||||||
|
|
||||||
|
|
||||||
|
class ComputeLoss:
|
||||||
|
# Compute losses
|
||||||
|
def __init__(self, model, autobalance=False):
|
||||||
|
super(ComputeLoss, self).__init__()
|
||||||
|
device = next(model.parameters()).device # get model device
|
||||||
|
h = model.hyp # hyperparameters
|
||||||
|
|
||||||
|
# Define criteria
|
||||||
|
BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device))
|
||||||
|
BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))
|
||||||
|
|
||||||
|
# Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
|
||||||
|
self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets
|
||||||
|
|
||||||
|
# Focal loss
|
||||||
|
g = h['fl_gamma'] # focal loss gamma
|
||||||
|
if g > 0:
|
||||||
|
BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
|
||||||
|
|
||||||
|
det = model.module.model[-1] if is_parallel(model) else model.model[-1] # Detect() module
|
||||||
|
self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.06, .02]) # P3-P7
|
||||||
|
self.ssi = list(det.stride).index(16) if autobalance else 0 # stride 16 index
|
||||||
|
self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, model.gr, h, autobalance
|
||||||
|
for k in 'na', 'nc', 'nl', 'anchors':
|
||||||
|
setattr(self, k, getattr(det, k))
|
||||||
|
|
||||||
|
def __call__(self, p, targets): # predictions, targets, model
|
||||||
|
device = targets.device
|
||||||
|
lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device)
|
||||||
|
tcls, tbox, indices, anchors = self.build_targets(p, targets) # targets
|
||||||
|
|
||||||
|
# Losses
|
||||||
|
for i, pi in enumerate(p): # layer index, layer predictions
|
||||||
|
b, a, gj, gi = indices[i] # image, anchor, gridy, gridx
|
||||||
|
tobj = torch.zeros_like(pi[..., 0], device=device) # target obj
|
||||||
|
|
||||||
|
n = b.shape[0] # number of targets
|
||||||
|
if n:
|
||||||
|
ps = pi[b, a, gj, gi] # prediction subset corresponding to targets
|
||||||
|
|
||||||
|
# Regression
|
||||||
|
pxy = ps[:, :2].sigmoid() * 2. - 0.5
|
||||||
|
pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]
|
||||||
|
pbox = torch.cat((pxy, pwh), 1) # predicted box
|
||||||
|
iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True) # iou(prediction, target)
|
||||||
|
lbox += (1.0 - iou).mean() # iou loss
|
||||||
|
|
||||||
|
# Objectness
|
||||||
|
tobj[b, a, gj, gi] = (1.0 - self.gr) + self.gr * iou.detach().clamp(0).type(tobj.dtype) # iou ratio
|
||||||
|
|
||||||
|
# Classification
|
||||||
|
if self.nc > 1: # cls loss (only if multiple classes)
|
||||||
|
t = torch.full_like(ps[:, 5:], self.cn, device=device) # targets
|
||||||
|
t[range(n), tcls[i]] = self.cp
|
||||||
|
lcls += self.BCEcls(ps[:, 5:], t) # BCE
|
||||||
|
|
||||||
|
# Append targets to text file
|
||||||
|
# with open('targets.txt', 'a') as file:
|
||||||
|
# [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
|
||||||
|
|
||||||
|
obji = self.BCEobj(pi[..., 4], tobj)
|
||||||
|
lobj += obji * self.balance[i] # obj loss
|
||||||
|
if self.autobalance:
|
||||||
|
self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()
|
||||||
|
|
||||||
|
if self.autobalance:
|
||||||
|
self.balance = [x / self.balance[self.ssi] for x in self.balance]
|
||||||
|
lbox *= self.hyp['box']
|
||||||
|
lobj *= self.hyp['obj']
|
||||||
|
lcls *= self.hyp['cls']
|
||||||
|
bs = tobj.shape[0] # batch size
|
||||||
|
|
||||||
|
loss = lbox + lobj + lcls
|
||||||
|
return loss * bs, torch.cat((lbox, lobj, lcls, loss)).detach()
|
||||||
|
|
||||||
|
def build_targets(self, p, targets):
|
||||||
|
# Build targets for compute_loss(), input targets(image,class,x,y,w,h)
|
||||||
|
na, nt = self.na, targets.shape[0] # number of anchors, targets
|
||||||
|
tcls, tbox, indices, anch = [], [], [], []
|
||||||
|
gain = torch.ones(7, device=targets.device) # normalized to gridspace gain
|
||||||
|
ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
|
||||||
|
targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices
|
||||||
|
|
||||||
|
g = 0.5 # bias
|
||||||
|
off = torch.tensor([[0, 0],
|
||||||
|
[1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m
|
||||||
|
# [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
|
||||||
|
], device=targets.device).float() * g # offsets
|
||||||
|
|
||||||
|
for i in range(self.nl):
|
||||||
|
anchors = self.anchors[i]
|
||||||
|
gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain
|
||||||
|
|
||||||
|
# Match targets to anchors
|
||||||
|
t = targets * gain
|
||||||
|
if nt:
|
||||||
|
# Matches
|
||||||
|
r = t[:, :, 4:6] / anchors[:, None] # wh ratio
|
||||||
|
j = torch.max(r, 1. / r).max(2)[0] < self.hyp['anchor_t'] # compare
|
||||||
|
# j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
|
||||||
|
t = t[j] # filter
|
||||||
|
|
||||||
|
# Offsets
|
||||||
|
gxy = t[:, 2:4] # grid xy
|
||||||
|
gxi = gain[[2, 3]] - gxy # inverse
|
||||||
|
j, k = ((gxy % 1. < g) & (gxy > 1.)).T
|
||||||
|
l, m = ((gxi % 1. < g) & (gxi > 1.)).T
|
||||||
|
j = torch.stack((torch.ones_like(j), j, k, l, m))
|
||||||
|
t = t.repeat((5, 1, 1))[j]
|
||||||
|
offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
|
||||||
|
else:
|
||||||
|
t = targets[0]
|
||||||
|
offsets = 0
|
||||||
|
|
||||||
|
# Define
|
||||||
|
b, c = t[:, :2].long().T # image, class
|
||||||
|
gxy = t[:, 2:4] # grid xy
|
||||||
|
gwh = t[:, 4:6] # grid wh
|
||||||
|
gij = (gxy - offsets).long()
|
||||||
|
gi, gj = gij.T # grid xy indices
|
||||||
|
|
||||||
|
# Append
|
||||||
|
a = t[:, 6].long() # anchor indices
|
||||||
|
indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices
|
||||||
|
tbox.append(torch.cat((gxy - gij, gwh), 1)) # box
|
||||||
|
anch.append(anchors[a]) # anchors
|
||||||
|
tcls.append(c) # class
|
||||||
|
|
||||||
|
return tcls, tbox, indices, anch
|
223
utils/metrics.py
Executable file
223
utils/metrics.py
Executable file
@ -0,0 +1,223 @@
|
|||||||
|
# Model validation metrics
|
||||||
|
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from . import general
|
||||||
|
|
||||||
|
|
||||||
|
def fitness(x):
|
||||||
|
# Model fitness as a weighted combination of metrics
|
||||||
|
w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
|
||||||
|
return (x[:, :4] * w).sum(1)
|
||||||
|
|
||||||
|
|
||||||
|
def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names=()):
|
||||||
|
""" Compute the average precision, given the recall and precision curves.
|
||||||
|
Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
|
||||||
|
# Arguments
|
||||||
|
tp: True positives (nparray, nx1 or nx10).
|
||||||
|
conf: Objectness value from 0-1 (nparray).
|
||||||
|
pred_cls: Predicted object classes (nparray).
|
||||||
|
target_cls: True object classes (nparray).
|
||||||
|
plot: Plot precision-recall curve at mAP@0.5
|
||||||
|
save_dir: Plot save directory
|
||||||
|
# Returns
|
||||||
|
The average precision as computed in py-faster-rcnn.
|
||||||
|
"""
|
||||||
|
|
||||||
|
# Sort by objectness
|
||||||
|
i = np.argsort(-conf)
|
||||||
|
tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
|
||||||
|
|
||||||
|
# Find unique classes
|
||||||
|
unique_classes = np.unique(target_cls)
|
||||||
|
nc = unique_classes.shape[0] # number of classes, number of detections
|
||||||
|
|
||||||
|
# Create Precision-Recall curve and compute AP for each class
|
||||||
|
px, py = np.linspace(0, 1, 1000), [] # for plotting
|
||||||
|
ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000))
|
||||||
|
for ci, c in enumerate(unique_classes):
|
||||||
|
i = pred_cls == c
|
||||||
|
n_l = (target_cls == c).sum() # number of labels
|
||||||
|
n_p = i.sum() # number of predictions
|
||||||
|
|
||||||
|
if n_p == 0 or n_l == 0:
|
||||||
|
continue
|
||||||
|
else:
|
||||||
|
# Accumulate FPs and TPs
|
||||||
|
fpc = (1 - tp[i]).cumsum(0)
|
||||||
|
tpc = tp[i].cumsum(0)
|
||||||
|
|
||||||
|
# Recall
|
||||||
|
recall = tpc / (n_l + 1e-16) # recall curve
|
||||||
|
r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0) # negative x, xp because xp decreases
|
||||||
|
|
||||||
|
# Precision
|
||||||
|
precision = tpc / (tpc + fpc) # precision curve
|
||||||
|
p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1) # p at pr_score
|
||||||
|
|
||||||
|
# AP from recall-precision curve
|
||||||
|
for j in range(tp.shape[1]):
|
||||||
|
ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j])
|
||||||
|
if plot and j == 0:
|
||||||
|
py.append(np.interp(px, mrec, mpre)) # precision at mAP@0.5
|
||||||
|
|
||||||
|
# Compute F1 (harmonic mean of precision and recall)
|
||||||
|
f1 = 2 * p * r / (p + r + 1e-16)
|
||||||
|
if plot:
|
||||||
|
plot_pr_curve(px, py, ap, Path(save_dir) / 'PR_curve.png', names)
|
||||||
|
plot_mc_curve(px, f1, Path(save_dir) / 'F1_curve.png', names, ylabel='F1')
|
||||||
|
plot_mc_curve(px, p, Path(save_dir) / 'P_curve.png', names, ylabel='Precision')
|
||||||
|
plot_mc_curve(px, r, Path(save_dir) / 'R_curve.png', names, ylabel='Recall')
|
||||||
|
|
||||||
|
i = f1.mean(0).argmax() # max F1 index
|
||||||
|
return p[:, i], r[:, i], ap, f1[:, i], unique_classes.astype('int32')
|
||||||
|
|
||||||
|
|
||||||
|
def compute_ap(recall, precision):
|
||||||
|
""" Compute the average precision, given the recall and precision curves
|
||||||
|
# Arguments
|
||||||
|
recall: The recall curve (list)
|
||||||
|
precision: The precision curve (list)
|
||||||
|
# Returns
|
||||||
|
Average precision, precision curve, recall curve
|
||||||
|
"""
|
||||||
|
|
||||||
|
# Append sentinel values to beginning and end
|
||||||
|
mrec = np.concatenate(([0.], recall, [recall[-1] + 0.01]))
|
||||||
|
mpre = np.concatenate(([1.], precision, [0.]))
|
||||||
|
|
||||||
|
# Compute the precision envelope
|
||||||
|
mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))
|
||||||
|
|
||||||
|
# Integrate area under curve
|
||||||
|
method = 'interp' # methods: 'continuous', 'interp'
|
||||||
|
if method == 'interp':
|
||||||
|
x = np.linspace(0, 1, 101) # 101-point interp (COCO)
|
||||||
|
ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate
|
||||||
|
else: # 'continuous'
|
||||||
|
i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes
|
||||||
|
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve
|
||||||
|
|
||||||
|
return ap, mpre, mrec
|
||||||
|
|
||||||
|
|
||||||
|
class ConfusionMatrix:
|
||||||
|
# Updated version of https://github.com/kaanakan/object_detection_confusion_matrix
|
||||||
|
def __init__(self, nc, conf=0.25, iou_thres=0.45):
|
||||||
|
self.matrix = np.zeros((nc + 1, nc + 1))
|
||||||
|
self.nc = nc # number of classes
|
||||||
|
self.conf = conf
|
||||||
|
self.iou_thres = iou_thres
|
||||||
|
|
||||||
|
def process_batch(self, detections, labels):
|
||||||
|
"""
|
||||||
|
Return intersection-over-union (Jaccard index) of boxes.
|
||||||
|
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
|
||||||
|
Arguments:
|
||||||
|
detections (Array[N, 6]), x1, y1, x2, y2, conf, class
|
||||||
|
labels (Array[M, 5]), class, x1, y1, x2, y2
|
||||||
|
Returns:
|
||||||
|
None, updates confusion matrix accordingly
|
||||||
|
"""
|
||||||
|
detections = detections[detections[:, 4] > self.conf]
|
||||||
|
gt_classes = labels[:, 0].int()
|
||||||
|
detection_classes = detections[:, 5].int()
|
||||||
|
iou = general.box_iou(labels[:, 1:], detections[:, :4])
|
||||||
|
|
||||||
|
x = torch.where(iou > self.iou_thres)
|
||||||
|
if x[0].shape[0]:
|
||||||
|
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
|
||||||
|
if x[0].shape[0] > 1:
|
||||||
|
matches = matches[matches[:, 2].argsort()[::-1]]
|
||||||
|
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
|
||||||
|
matches = matches[matches[:, 2].argsort()[::-1]]
|
||||||
|
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
|
||||||
|
else:
|
||||||
|
matches = np.zeros((0, 3))
|
||||||
|
|
||||||
|
n = matches.shape[0] > 0
|
||||||
|
m0, m1, _ = matches.transpose().astype(np.int16)
|
||||||
|
for i, gc in enumerate(gt_classes):
|
||||||
|
j = m0 == i
|
||||||
|
if n and sum(j) == 1:
|
||||||
|
self.matrix[gc, detection_classes[m1[j]]] += 1 # correct
|
||||||
|
else:
|
||||||
|
self.matrix[self.nc, gc] += 1 # background FP
|
||||||
|
|
||||||
|
if n:
|
||||||
|
for i, dc in enumerate(detection_classes):
|
||||||
|
if not any(m1 == i):
|
||||||
|
self.matrix[dc, self.nc] += 1 # background FN
|
||||||
|
|
||||||
|
def matrix(self):
|
||||||
|
return self.matrix
|
||||||
|
|
||||||
|
def plot(self, save_dir='', names=()):
|
||||||
|
try:
|
||||||
|
import seaborn as sn
|
||||||
|
|
||||||
|
array = self.matrix / (self.matrix.sum(0).reshape(1, self.nc + 1) + 1E-6) # normalize
|
||||||
|
array[array < 0.005] = np.nan # don't annotate (would appear as 0.00)
|
||||||
|
|
||||||
|
fig = plt.figure(figsize=(12, 9), tight_layout=True)
|
||||||
|
sn.set(font_scale=1.0 if self.nc < 50 else 0.8) # for label size
|
||||||
|
labels = (0 < len(names) < 99) and len(names) == self.nc # apply names to ticklabels
|
||||||
|
sn.heatmap(array, annot=self.nc < 30, annot_kws={"size": 8}, cmap='Blues', fmt='.2f', square=True,
|
||||||
|
xticklabels=names + ['background FP'] if labels else "auto",
|
||||||
|
yticklabels=names + ['background FN'] if labels else "auto").set_facecolor((1, 1, 1))
|
||||||
|
fig.axes[0].set_xlabel('True')
|
||||||
|
fig.axes[0].set_ylabel('Predicted')
|
||||||
|
fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250)
|
||||||
|
except Exception as e:
|
||||||
|
pass
|
||||||
|
|
||||||
|
def print(self):
|
||||||
|
for i in range(self.nc + 1):
|
||||||
|
print(' '.join(map(str, self.matrix[i])))
|
||||||
|
|
||||||
|
|
||||||
|
# Plots ----------------------------------------------------------------------------------------------------------------
|
||||||
|
|
||||||
|
def plot_pr_curve(px, py, ap, save_dir='pr_curve.png', names=()):
|
||||||
|
# Precision-recall curve
|
||||||
|
fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
|
||||||
|
py = np.stack(py, axis=1)
|
||||||
|
|
||||||
|
if 0 < len(names) < 21: # display per-class legend if < 21 classes
|
||||||
|
for i, y in enumerate(py.T):
|
||||||
|
ax.plot(px, y, linewidth=1, label=f'{names[i]} {ap[i, 0]:.3f}') # plot(recall, precision)
|
||||||
|
else:
|
||||||
|
ax.plot(px, py, linewidth=1, color='grey') # plot(recall, precision)
|
||||||
|
|
||||||
|
ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f mAP@0.5' % ap[:, 0].mean())
|
||||||
|
ax.set_xlabel('Recall')
|
||||||
|
ax.set_ylabel('Precision')
|
||||||
|
ax.set_xlim(0, 1)
|
||||||
|
ax.set_ylim(0, 1)
|
||||||
|
plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
|
||||||
|
fig.savefig(Path(save_dir), dpi=250)
|
||||||
|
|
||||||
|
|
||||||
|
def plot_mc_curve(px, py, save_dir='mc_curve.png', names=(), xlabel='Confidence', ylabel='Metric'):
|
||||||
|
# Metric-confidence curve
|
||||||
|
fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
|
||||||
|
|
||||||
|
if 0 < len(names) < 21: # display per-class legend if < 21 classes
|
||||||
|
for i, y in enumerate(py):
|
||||||
|
ax.plot(px, y, linewidth=1, label=f'{names[i]}') # plot(confidence, metric)
|
||||||
|
else:
|
||||||
|
ax.plot(px, py.T, linewidth=1, color='grey') # plot(confidence, metric)
|
||||||
|
|
||||||
|
y = py.mean(0)
|
||||||
|
ax.plot(px, y, linewidth=3, color='blue', label=f'all classes {y.max():.2f} at {px[y.argmax()]:.3f}')
|
||||||
|
ax.set_xlabel(xlabel)
|
||||||
|
ax.set_ylabel(ylabel)
|
||||||
|
ax.set_xlim(0, 1)
|
||||||
|
ax.set_ylim(0, 1)
|
||||||
|
plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
|
||||||
|
fig.savefig(Path(save_dir), dpi=250)
|
433
utils/plots.py
Executable file
433
utils/plots.py
Executable file
@ -0,0 +1,433 @@
|
|||||||
|
# Plotting utils
|
||||||
|
|
||||||
|
import glob
|
||||||
|
import math
|
||||||
|
import os
|
||||||
|
import random
|
||||||
|
from copy import copy
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import cv2
|
||||||
|
import matplotlib
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
|
import seaborn as sns
|
||||||
|
import torch
|
||||||
|
import yaml
|
||||||
|
from PIL import Image, ImageDraw, ImageFont
|
||||||
|
from scipy.signal import butter, filtfilt
|
||||||
|
|
||||||
|
from utils.general import xywh2xyxy, xyxy2xywh
|
||||||
|
from utils.metrics import fitness
|
||||||
|
|
||||||
|
# Settings
|
||||||
|
matplotlib.rc('font', **{'size': 11})
|
||||||
|
matplotlib.use('Agg') # for writing to files only
|
||||||
|
|
||||||
|
|
||||||
|
def color_list():
|
||||||
|
# Return first 10 plt colors as (r,g,b) https://stackoverflow.com/questions/51350872/python-from-color-name-to-rgb
|
||||||
|
def hex2rgb(h):
|
||||||
|
return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4))
|
||||||
|
|
||||||
|
return [hex2rgb(h) for h in matplotlib.colors.TABLEAU_COLORS.values()] # or BASE_ (8), CSS4_ (148), XKCD_ (949)
|
||||||
|
|
||||||
|
|
||||||
|
def hist2d(x, y, n=100):
|
||||||
|
# 2d histogram used in labels.png and evolve.png
|
||||||
|
xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n)
|
||||||
|
hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges))
|
||||||
|
xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1)
|
||||||
|
yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1)
|
||||||
|
return np.log(hist[xidx, yidx])
|
||||||
|
|
||||||
|
|
||||||
|
def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5):
|
||||||
|
# https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy
|
||||||
|
def butter_lowpass(cutoff, fs, order):
|
||||||
|
nyq = 0.5 * fs
|
||||||
|
normal_cutoff = cutoff / nyq
|
||||||
|
return butter(order, normal_cutoff, btype='low', analog=False)
|
||||||
|
|
||||||
|
b, a = butter_lowpass(cutoff, fs, order=order)
|
||||||
|
return filtfilt(b, a, data) # forward-backward filter
|
||||||
|
|
||||||
|
|
||||||
|
def plot_one_box(x, img, color=None, label=None, line_thickness=3):
|
||||||
|
# Plots one bounding box on image img
|
||||||
|
tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 # line/font thickness
|
||||||
|
color = color or [random.randint(0, 255) for _ in range(3)]
|
||||||
|
c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
|
||||||
|
cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)
|
||||||
|
if label:
|
||||||
|
tf = max(tl - 1, 1) # font thickness
|
||||||
|
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
|
||||||
|
c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
|
||||||
|
cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA) # filled
|
||||||
|
cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
|
||||||
|
|
||||||
|
|
||||||
|
def plot_one_box_PIL(box, img, color=None, label=None, line_thickness=None):
|
||||||
|
img = Image.fromarray(img)
|
||||||
|
draw = ImageDraw.Draw(img)
|
||||||
|
line_thickness = line_thickness or max(int(min(img.size) / 200), 2)
|
||||||
|
draw.rectangle(box, width=line_thickness, outline=tuple(color)) # plot
|
||||||
|
if label:
|
||||||
|
fontsize = max(round(max(img.size) / 40), 12)
|
||||||
|
font = ImageFont.truetype("Arial.ttf", fontsize)
|
||||||
|
txt_width, txt_height = font.getsize(label)
|
||||||
|
draw.rectangle([box[0], box[1] - txt_height + 4, box[0] + txt_width, box[1]], fill=tuple(color))
|
||||||
|
draw.text((box[0], box[1] - txt_height + 1), label, fill=(255, 255, 255), font=font)
|
||||||
|
return np.asarray(img)
|
||||||
|
|
||||||
|
|
||||||
|
def plot_wh_methods(): # from utils.plots import *; plot_wh_methods()
|
||||||
|
# Compares the two methods for width-height anchor multiplication
|
||||||
|
# https://github.com/ultralytics/yolov3/issues/168
|
||||||
|
x = np.arange(-4.0, 4.0, .1)
|
||||||
|
ya = np.exp(x)
|
||||||
|
yb = torch.sigmoid(torch.from_numpy(x)).numpy() * 2
|
||||||
|
|
||||||
|
fig = plt.figure(figsize=(6, 3), tight_layout=True)
|
||||||
|
plt.plot(x, ya, '.-', label='YOLOv3')
|
||||||
|
plt.plot(x, yb ** 2, '.-', label='YOLOv5 ^2')
|
||||||
|
plt.plot(x, yb ** 1.6, '.-', label='YOLOv5 ^1.6')
|
||||||
|
plt.xlim(left=-4, right=4)
|
||||||
|
plt.ylim(bottom=0, top=6)
|
||||||
|
plt.xlabel('input')
|
||||||
|
plt.ylabel('output')
|
||||||
|
plt.grid()
|
||||||
|
plt.legend()
|
||||||
|
fig.savefig('comparison.png', dpi=200)
|
||||||
|
|
||||||
|
|
||||||
|
def output_to_target(output):
|
||||||
|
# Convert model output to target format [batch_id, class_id, x, y, w, h, conf]
|
||||||
|
targets = []
|
||||||
|
for i, o in enumerate(output):
|
||||||
|
for *box, conf, cls in o.cpu().numpy():
|
||||||
|
targets.append([i, cls, *list(*xyxy2xywh(np.array(box)[None])), conf])
|
||||||
|
return np.array(targets)
|
||||||
|
|
||||||
|
|
||||||
|
def plot_images(images, targets, paths=None, fname='images.jpg', names=None, max_size=640, max_subplots=16):
|
||||||
|
# Plot image grid with labels
|
||||||
|
|
||||||
|
if isinstance(images, torch.Tensor):
|
||||||
|
images = images.cpu().float().numpy()
|
||||||
|
if isinstance(targets, torch.Tensor):
|
||||||
|
targets = targets.cpu().numpy()
|
||||||
|
|
||||||
|
# un-normalise
|
||||||
|
if np.max(images[0]) <= 1:
|
||||||
|
images *= 255
|
||||||
|
|
||||||
|
tl = 3 # line thickness
|
||||||
|
tf = max(tl - 1, 1) # font thickness
|
||||||
|
bs, _, h, w = images.shape # batch size, _, height, width
|
||||||
|
bs = min(bs, max_subplots) # limit plot images
|
||||||
|
ns = np.ceil(bs ** 0.5) # number of subplots (square)
|
||||||
|
|
||||||
|
# Check if we should resize
|
||||||
|
scale_factor = max_size / max(h, w)
|
||||||
|
if scale_factor < 1:
|
||||||
|
h = math.ceil(scale_factor * h)
|
||||||
|
w = math.ceil(scale_factor * w)
|
||||||
|
|
||||||
|
colors = color_list() # list of colors
|
||||||
|
mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init
|
||||||
|
for i, img in enumerate(images):
|
||||||
|
if i == max_subplots: # if last batch has fewer images than we expect
|
||||||
|
break
|
||||||
|
|
||||||
|
block_x = int(w * (i // ns))
|
||||||
|
block_y = int(h * (i % ns))
|
||||||
|
|
||||||
|
img = img.transpose(1, 2, 0)
|
||||||
|
if scale_factor < 1:
|
||||||
|
img = cv2.resize(img, (w, h))
|
||||||
|
|
||||||
|
mosaic[block_y:block_y + h, block_x:block_x + w, :] = img
|
||||||
|
if len(targets) > 0:
|
||||||
|
image_targets = targets[targets[:, 0] == i]
|
||||||
|
boxes = xywh2xyxy(image_targets[:, 2:6]).T
|
||||||
|
classes = image_targets[:, 1].astype('int')
|
||||||
|
labels = image_targets.shape[1] == 6 # labels if no conf column
|
||||||
|
conf = None if labels else image_targets[:, 6] # check for confidence presence (label vs pred)
|
||||||
|
|
||||||
|
if boxes.shape[1]:
|
||||||
|
if boxes.max() <= 1.01: # if normalized with tolerance 0.01
|
||||||
|
boxes[[0, 2]] *= w # scale to pixels
|
||||||
|
boxes[[1, 3]] *= h
|
||||||
|
elif scale_factor < 1: # absolute coords need scale if image scales
|
||||||
|
boxes *= scale_factor
|
||||||
|
boxes[[0, 2]] += block_x
|
||||||
|
boxes[[1, 3]] += block_y
|
||||||
|
for j, box in enumerate(boxes.T):
|
||||||
|
cls = int(classes[j])
|
||||||
|
color = colors[cls % len(colors)]
|
||||||
|
cls = names[cls] if names else cls
|
||||||
|
if labels or conf[j] > 0.25: # 0.25 conf thresh
|
||||||
|
label = '%s' % cls if labels else '%s %.1f' % (cls, conf[j])
|
||||||
|
plot_one_box(box, mosaic, label=label, color=color, line_thickness=tl)
|
||||||
|
|
||||||
|
# Draw image filename labels
|
||||||
|
if paths:
|
||||||
|
label = Path(paths[i]).name[:40] # trim to 40 char
|
||||||
|
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
|
||||||
|
cv2.putText(mosaic, label, (block_x + 5, block_y + t_size[1] + 5), 0, tl / 3, [220, 220, 220], thickness=tf,
|
||||||
|
lineType=cv2.LINE_AA)
|
||||||
|
|
||||||
|
# Image border
|
||||||
|
cv2.rectangle(mosaic, (block_x, block_y), (block_x + w, block_y + h), (255, 255, 255), thickness=3)
|
||||||
|
|
||||||
|
if fname:
|
||||||
|
r = min(1280. / max(h, w) / ns, 1.0) # ratio to limit image size
|
||||||
|
mosaic = cv2.resize(mosaic, (int(ns * w * r), int(ns * h * r)), interpolation=cv2.INTER_AREA)
|
||||||
|
# cv2.imwrite(fname, cv2.cvtColor(mosaic, cv2.COLOR_BGR2RGB)) # cv2 save
|
||||||
|
Image.fromarray(mosaic).save(fname) # PIL save
|
||||||
|
return mosaic
|
||||||
|
|
||||||
|
|
||||||
|
def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=''):
|
||||||
|
# Plot LR simulating training for full epochs
|
||||||
|
optimizer, scheduler = copy(optimizer), copy(scheduler) # do not modify originals
|
||||||
|
y = []
|
||||||
|
for _ in range(epochs):
|
||||||
|
scheduler.step()
|
||||||
|
y.append(optimizer.param_groups[0]['lr'])
|
||||||
|
plt.plot(y, '.-', label='LR')
|
||||||
|
plt.xlabel('epoch')
|
||||||
|
plt.ylabel('LR')
|
||||||
|
plt.grid()
|
||||||
|
plt.xlim(0, epochs)
|
||||||
|
plt.ylim(0)
|
||||||
|
plt.savefig(Path(save_dir) / 'LR.png', dpi=200)
|
||||||
|
plt.close()
|
||||||
|
|
||||||
|
|
||||||
|
def plot_test_txt(): # from utils.plots import *; plot_test()
|
||||||
|
# Plot test.txt histograms
|
||||||
|
x = np.loadtxt('test.txt', dtype=np.float32)
|
||||||
|
box = xyxy2xywh(x[:, :4])
|
||||||
|
cx, cy = box[:, 0], box[:, 1]
|
||||||
|
|
||||||
|
fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True)
|
||||||
|
ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0)
|
||||||
|
ax.set_aspect('equal')
|
||||||
|
plt.savefig('hist2d.png', dpi=300)
|
||||||
|
|
||||||
|
fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True)
|
||||||
|
ax[0].hist(cx, bins=600)
|
||||||
|
ax[1].hist(cy, bins=600)
|
||||||
|
plt.savefig('hist1d.png', dpi=200)
|
||||||
|
|
||||||
|
|
||||||
|
def plot_targets_txt(): # from utils.plots import *; plot_targets_txt()
|
||||||
|
# Plot targets.txt histograms
|
||||||
|
x = np.loadtxt('targets.txt', dtype=np.float32).T
|
||||||
|
s = ['x targets', 'y targets', 'width targets', 'height targets']
|
||||||
|
fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)
|
||||||
|
ax = ax.ravel()
|
||||||
|
for i in range(4):
|
||||||
|
ax[i].hist(x[i], bins=100, label='%.3g +/- %.3g' % (x[i].mean(), x[i].std()))
|
||||||
|
ax[i].legend()
|
||||||
|
ax[i].set_title(s[i])
|
||||||
|
plt.savefig('targets.jpg', dpi=200)
|
||||||
|
|
||||||
|
|
||||||
|
def plot_study_txt(path='', x=None): # from utils.plots import *; plot_study_txt()
|
||||||
|
# Plot study.txt generated by test.py
|
||||||
|
fig, ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)
|
||||||
|
# ax = ax.ravel()
|
||||||
|
|
||||||
|
fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True)
|
||||||
|
# for f in [Path(path) / f'study_coco_{x}.txt' for x in ['yolov5s', 'yolov5m', 'yolov5l', 'yolov5x']]:
|
||||||
|
for f in sorted(Path(path).glob('study*.txt')):
|
||||||
|
y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T
|
||||||
|
x = np.arange(y.shape[1]) if x is None else np.array(x)
|
||||||
|
s = ['P', 'R', 'mAP@.5', 'mAP@.5:.95', 't_inference (ms/img)', 't_NMS (ms/img)', 't_total (ms/img)']
|
||||||
|
# for i in range(7):
|
||||||
|
# ax[i].plot(x, y[i], '.-', linewidth=2, markersize=8)
|
||||||
|
# ax[i].set_title(s[i])
|
||||||
|
|
||||||
|
j = y[3].argmax() + 1
|
||||||
|
ax2.plot(y[6, :j], y[3, :j] * 1E2, '.-', linewidth=2, markersize=8,
|
||||||
|
label=f.stem.replace('study_coco_', '').replace('yolo', 'YOLO'))
|
||||||
|
|
||||||
|
ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [34.6, 40.5, 43.0, 47.5, 49.7, 51.5],
|
||||||
|
'k.-', linewidth=2, markersize=8, alpha=.25, label='EfficientDet')
|
||||||
|
|
||||||
|
ax2.grid(alpha=0.2)
|
||||||
|
ax2.set_yticks(np.arange(20, 60, 5))
|
||||||
|
ax2.set_xlim(0, 30)
|
||||||
|
ax2.set_ylim(30, 55)
|
||||||
|
ax2.set_xlabel('GPU Speed (ms/img)')
|
||||||
|
ax2.set_ylabel('COCO AP val')
|
||||||
|
ax2.legend(loc='lower right')
|
||||||
|
plt.savefig(str(Path(path).name) + '.png', dpi=300)
|
||||||
|
|
||||||
|
|
||||||
|
def plot_labels(labels, names=(), save_dir=Path(''), loggers=None):
|
||||||
|
# plot dataset labels
|
||||||
|
print('Plotting labels... ')
|
||||||
|
c, b = labels[:, 0], labels[:, 1:].transpose() # classes, boxes
|
||||||
|
nc = int(c.max() + 1) # number of classes
|
||||||
|
colors = color_list()
|
||||||
|
x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height'])
|
||||||
|
|
||||||
|
# seaborn correlogram
|
||||||
|
sns.pairplot(x, corner=True, diag_kind='auto', kind='hist', diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9))
|
||||||
|
plt.savefig(save_dir / 'labels_correlogram.jpg', dpi=200)
|
||||||
|
plt.close()
|
||||||
|
|
||||||
|
# matplotlib labels
|
||||||
|
matplotlib.use('svg') # faster
|
||||||
|
ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel()
|
||||||
|
ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
|
||||||
|
ax[0].set_ylabel('instances')
|
||||||
|
if 0 < len(names) < 30:
|
||||||
|
ax[0].set_xticks(range(len(names)))
|
||||||
|
ax[0].set_xticklabels(names, rotation=90, fontsize=10)
|
||||||
|
else:
|
||||||
|
ax[0].set_xlabel('classes')
|
||||||
|
sns.histplot(x, x='x', y='y', ax=ax[2], bins=50, pmax=0.9)
|
||||||
|
sns.histplot(x, x='width', y='height', ax=ax[3], bins=50, pmax=0.9)
|
||||||
|
|
||||||
|
# rectangles
|
||||||
|
labels[:, 1:3] = 0.5 # center
|
||||||
|
labels[:, 1:] = xywh2xyxy(labels[:, 1:]) * 2000
|
||||||
|
img = Image.fromarray(np.ones((2000, 2000, 3), dtype=np.uint8) * 255)
|
||||||
|
for cls, *box in labels[:1000]:
|
||||||
|
ImageDraw.Draw(img).rectangle(box, width=1, outline=colors[int(cls) % 10]) # plot
|
||||||
|
ax[1].imshow(img)
|
||||||
|
ax[1].axis('off')
|
||||||
|
|
||||||
|
for a in [0, 1, 2, 3]:
|
||||||
|
for s in ['top', 'right', 'left', 'bottom']:
|
||||||
|
ax[a].spines[s].set_visible(False)
|
||||||
|
|
||||||
|
plt.savefig(save_dir / 'labels.jpg', dpi=200)
|
||||||
|
matplotlib.use('Agg')
|
||||||
|
plt.close()
|
||||||
|
|
||||||
|
# loggers
|
||||||
|
for k, v in loggers.items() or {}:
|
||||||
|
if k == 'wandb' and v:
|
||||||
|
v.log({"Labels": [v.Image(str(x), caption=x.name) for x in save_dir.glob('*labels*.jpg')]}, commit=False)
|
||||||
|
|
||||||
|
|
||||||
|
def plot_evolution(yaml_file='data/hyp.finetune.yaml'): # from utils.plots import *; plot_evolution()
|
||||||
|
# Plot hyperparameter evolution results in evolve.txt
|
||||||
|
with open(yaml_file) as f:
|
||||||
|
hyp = yaml.load(f, Loader=yaml.SafeLoader)
|
||||||
|
x = np.loadtxt('evolve.txt', ndmin=2)
|
||||||
|
f = fitness(x)
|
||||||
|
# weights = (f - f.min()) ** 2 # for weighted results
|
||||||
|
plt.figure(figsize=(10, 12), tight_layout=True)
|
||||||
|
matplotlib.rc('font', **{'size': 8})
|
||||||
|
for i, (k, v) in enumerate(hyp.items()):
|
||||||
|
y = x[:, i + 7]
|
||||||
|
# mu = (y * weights).sum() / weights.sum() # best weighted result
|
||||||
|
mu = y[f.argmax()] # best single result
|
||||||
|
plt.subplot(6, 5, i + 1)
|
||||||
|
plt.scatter(y, f, c=hist2d(y, f, 20), cmap='viridis', alpha=.8, edgecolors='none')
|
||||||
|
plt.plot(mu, f.max(), 'k+', markersize=15)
|
||||||
|
plt.title('%s = %.3g' % (k, mu), fontdict={'size': 9}) # limit to 40 characters
|
||||||
|
if i % 5 != 0:
|
||||||
|
plt.yticks([])
|
||||||
|
print('%15s: %.3g' % (k, mu))
|
||||||
|
plt.savefig('evolve.png', dpi=200)
|
||||||
|
print('\nPlot saved as evolve.png')
|
||||||
|
|
||||||
|
|
||||||
|
def profile_idetection(start=0, stop=0, labels=(), save_dir=''):
|
||||||
|
# Plot iDetection '*.txt' per-image logs. from utils.plots import *; profile_idetection()
|
||||||
|
ax = plt.subplots(2, 4, figsize=(12, 6), tight_layout=True)[1].ravel()
|
||||||
|
s = ['Images', 'Free Storage (GB)', 'RAM Usage (GB)', 'Battery', 'dt_raw (ms)', 'dt_smooth (ms)', 'real-world FPS']
|
||||||
|
files = list(Path(save_dir).glob('frames*.txt'))
|
||||||
|
for fi, f in enumerate(files):
|
||||||
|
try:
|
||||||
|
results = np.loadtxt(f, ndmin=2).T[:, 90:-30] # clip first and last rows
|
||||||
|
n = results.shape[1] # number of rows
|
||||||
|
x = np.arange(start, min(stop, n) if stop else n)
|
||||||
|
results = results[:, x]
|
||||||
|
t = (results[0] - results[0].min()) # set t0=0s
|
||||||
|
results[0] = x
|
||||||
|
for i, a in enumerate(ax):
|
||||||
|
if i < len(results):
|
||||||
|
label = labels[fi] if len(labels) else f.stem.replace('frames_', '')
|
||||||
|
a.plot(t, results[i], marker='.', label=label, linewidth=1, markersize=5)
|
||||||
|
a.set_title(s[i])
|
||||||
|
a.set_xlabel('time (s)')
|
||||||
|
# if fi == len(files) - 1:
|
||||||
|
# a.set_ylim(bottom=0)
|
||||||
|
for side in ['top', 'right']:
|
||||||
|
a.spines[side].set_visible(False)
|
||||||
|
else:
|
||||||
|
a.remove()
|
||||||
|
except Exception as e:
|
||||||
|
print('Warning: Plotting error for %s; %s' % (f, e))
|
||||||
|
|
||||||
|
ax[1].legend()
|
||||||
|
plt.savefig(Path(save_dir) / 'idetection_profile.png', dpi=200)
|
||||||
|
|
||||||
|
|
||||||
|
def plot_results_overlay(start=0, stop=0): # from utils.plots import *; plot_results_overlay()
|
||||||
|
# Plot training 'results*.txt', overlaying train and val losses
|
||||||
|
s = ['train', 'train', 'train', 'Precision', 'mAP@0.5', 'val', 'val', 'val', 'Recall', 'mAP@0.5:0.95'] # legends
|
||||||
|
t = ['Box', 'Objectness', 'Classification', 'P-R', 'mAP-F1'] # titles
|
||||||
|
for f in sorted(glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')):
|
||||||
|
results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
|
||||||
|
n = results.shape[1] # number of rows
|
||||||
|
x = range(start, min(stop, n) if stop else n)
|
||||||
|
fig, ax = plt.subplots(1, 5, figsize=(14, 3.5), tight_layout=True)
|
||||||
|
ax = ax.ravel()
|
||||||
|
for i in range(5):
|
||||||
|
for j in [i, i + 5]:
|
||||||
|
y = results[j, x]
|
||||||
|
ax[i].plot(x, y, marker='.', label=s[j])
|
||||||
|
# y_smooth = butter_lowpass_filtfilt(y)
|
||||||
|
# ax[i].plot(x, np.gradient(y_smooth), marker='.', label=s[j])
|
||||||
|
|
||||||
|
ax[i].set_title(t[i])
|
||||||
|
ax[i].legend()
|
||||||
|
ax[i].set_ylabel(f) if i == 0 else None # add filename
|
||||||
|
fig.savefig(f.replace('.txt', '.png'), dpi=200)
|
||||||
|
|
||||||
|
|
||||||
|
def plot_results(start=0, stop=0, bucket='', id=(), labels=(), save_dir=''):
|
||||||
|
# Plot training 'results*.txt'. from utils.plots import *; plot_results(save_dir='runs/train/exp')
|
||||||
|
fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
|
||||||
|
ax = ax.ravel()
|
||||||
|
s = ['Box', 'Objectness', 'Classification', 'Precision', 'Recall',
|
||||||
|
'val Box', 'val Objectness', 'val Classification', 'mAP@0.5', 'mAP@0.5:0.95']
|
||||||
|
if bucket:
|
||||||
|
# files = ['https://storage.googleapis.com/%s/results%g.txt' % (bucket, x) for x in id]
|
||||||
|
files = ['results%g.txt' % x for x in id]
|
||||||
|
c = ('gsutil cp ' + '%s ' * len(files) + '.') % tuple('gs://%s/results%g.txt' % (bucket, x) for x in id)
|
||||||
|
os.system(c)
|
||||||
|
else:
|
||||||
|
files = list(Path(save_dir).glob('results*.txt'))
|
||||||
|
assert len(files), 'No results.txt files found in %s, nothing to plot.' % os.path.abspath(save_dir)
|
||||||
|
for fi, f in enumerate(files):
|
||||||
|
try:
|
||||||
|
results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
|
||||||
|
n = results.shape[1] # number of rows
|
||||||
|
x = range(start, min(stop, n) if stop else n)
|
||||||
|
for i in range(10):
|
||||||
|
y = results[i, x]
|
||||||
|
if i in [0, 1, 2, 5, 6, 7]:
|
||||||
|
y[y == 0] = np.nan # don't show zero loss values
|
||||||
|
# y /= y[0] # normalize
|
||||||
|
label = labels[fi] if len(labels) else f.stem
|
||||||
|
ax[i].plot(x, y, marker='.', label=label, linewidth=2, markersize=8)
|
||||||
|
ax[i].set_title(s[i])
|
||||||
|
# if i in [5, 6, 7]: # share train and val loss y axes
|
||||||
|
# ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
|
||||||
|
except Exception as e:
|
||||||
|
print('Warning: Plotting error for %s; %s' % (f, e))
|
||||||
|
|
||||||
|
ax[1].legend()
|
||||||
|
fig.savefig(Path(save_dir) / 'results.png', dpi=200)
|
303
utils/torch_utils.py
Executable file
303
utils/torch_utils.py
Executable file
@ -0,0 +1,303 @@
|
|||||||
|
# YOLOv5 PyTorch utils
|
||||||
|
|
||||||
|
import datetime
|
||||||
|
import logging
|
||||||
|
import math
|
||||||
|
import os
|
||||||
|
import platform
|
||||||
|
import subprocess
|
||||||
|
import time
|
||||||
|
from contextlib import contextmanager
|
||||||
|
from copy import deepcopy
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.backends.cudnn as cudnn
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
import torchvision
|
||||||
|
|
||||||
|
try:
|
||||||
|
import thop # for FLOPS computation
|
||||||
|
except ImportError:
|
||||||
|
thop = None
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
@contextmanager
|
||||||
|
def torch_distributed_zero_first(local_rank: int):
|
||||||
|
"""
|
||||||
|
Decorator to make all processes in distributed training wait for each local_master to do something.
|
||||||
|
"""
|
||||||
|
if local_rank not in [-1, 0]:
|
||||||
|
torch.distributed.barrier()
|
||||||
|
yield
|
||||||
|
if local_rank == 0:
|
||||||
|
torch.distributed.barrier()
|
||||||
|
|
||||||
|
|
||||||
|
def init_torch_seeds(seed=0):
|
||||||
|
# Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html
|
||||||
|
torch.manual_seed(seed)
|
||||||
|
if seed == 0: # slower, more reproducible
|
||||||
|
cudnn.benchmark, cudnn.deterministic = False, True
|
||||||
|
else: # faster, less reproducible
|
||||||
|
cudnn.benchmark, cudnn.deterministic = True, False
|
||||||
|
|
||||||
|
|
||||||
|
def date_modified(path=__file__):
|
||||||
|
# return human-readable file modification date, i.e. '2021-3-26'
|
||||||
|
t = datetime.datetime.fromtimestamp(Path(path).stat().st_mtime)
|
||||||
|
return f'{t.year}-{t.month}-{t.day}'
|
||||||
|
|
||||||
|
|
||||||
|
def git_describe(path=Path(__file__).parent): # path must be a directory
|
||||||
|
# return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe
|
||||||
|
s = f'git -C {path} describe --tags --long --always'
|
||||||
|
try:
|
||||||
|
return subprocess.check_output(s, shell=True, stderr=subprocess.STDOUT).decode()[:-1]
|
||||||
|
except subprocess.CalledProcessError as e:
|
||||||
|
return '' # not a git repository
|
||||||
|
|
||||||
|
|
||||||
|
def select_device(device='', batch_size=None):
|
||||||
|
# device = 'cpu' or '0' or '0,1,2,3'
|
||||||
|
s = f'YOLOv5 🚀 {git_describe() or date_modified()} torch {torch.__version__} ' # string
|
||||||
|
cpu = device.lower() == 'cpu'
|
||||||
|
if cpu:
|
||||||
|
os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False
|
||||||
|
elif device: # non-cpu device requested
|
||||||
|
os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable
|
||||||
|
assert torch.cuda.is_available(), f'CUDA unavailable, invalid device {device} requested' # check availability
|
||||||
|
|
||||||
|
cuda = not cpu and torch.cuda.is_available()
|
||||||
|
if cuda:
|
||||||
|
n = torch.cuda.device_count()
|
||||||
|
if n > 1 and batch_size: # check that batch_size is compatible with device_count
|
||||||
|
assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}'
|
||||||
|
space = ' ' * len(s)
|
||||||
|
for i, d in enumerate(device.split(',') if device else range(n)):
|
||||||
|
p = torch.cuda.get_device_properties(i)
|
||||||
|
s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / 1024 ** 2}MB)\n" # bytes to MB
|
||||||
|
else:
|
||||||
|
s += 'CPU\n'
|
||||||
|
|
||||||
|
logger.info(s.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else s) # emoji-safe
|
||||||
|
return torch.device('cuda:0' if cuda else 'cpu')
|
||||||
|
|
||||||
|
|
||||||
|
def time_synchronized():
|
||||||
|
# pytorch-accurate time
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
torch.cuda.synchronize()
|
||||||
|
return time.time()
|
||||||
|
|
||||||
|
|
||||||
|
def profile(x, ops, n=100, device=None):
|
||||||
|
# profile a pytorch module or list of modules. Example usage:
|
||||||
|
# x = torch.randn(16, 3, 640, 640) # input
|
||||||
|
# m1 = lambda x: x * torch.sigmoid(x)
|
||||||
|
# m2 = nn.SiLU()
|
||||||
|
# profile(x, [m1, m2], n=100) # profile speed over 100 iterations
|
||||||
|
|
||||||
|
device = device or torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
||||||
|
x = x.to(device)
|
||||||
|
x.requires_grad = True
|
||||||
|
print(torch.__version__, device.type, torch.cuda.get_device_properties(0) if device.type == 'cuda' else '')
|
||||||
|
print(f"\n{'Params':>12s}{'GFLOPS':>12s}{'forward (ms)':>16s}{'backward (ms)':>16s}{'input':>24s}{'output':>24s}")
|
||||||
|
for m in ops if isinstance(ops, list) else [ops]:
|
||||||
|
m = m.to(device) if hasattr(m, 'to') else m # device
|
||||||
|
m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m # type
|
||||||
|
dtf, dtb, t = 0., 0., [0., 0., 0.] # dt forward, backward
|
||||||
|
try:
|
||||||
|
flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # GFLOPS
|
||||||
|
except:
|
||||||
|
flops = 0
|
||||||
|
|
||||||
|
for _ in range(n):
|
||||||
|
t[0] = time_synchronized()
|
||||||
|
y = m(x)
|
||||||
|
t[1] = time_synchronized()
|
||||||
|
try:
|
||||||
|
_ = y.sum().backward()
|
||||||
|
t[2] = time_synchronized()
|
||||||
|
except: # no backward method
|
||||||
|
t[2] = float('nan')
|
||||||
|
dtf += (t[1] - t[0]) * 1000 / n # ms per op forward
|
||||||
|
dtb += (t[2] - t[1]) * 1000 / n # ms per op backward
|
||||||
|
|
||||||
|
s_in = tuple(x.shape) if isinstance(x, torch.Tensor) else 'list'
|
||||||
|
s_out = tuple(y.shape) if isinstance(y, torch.Tensor) else 'list'
|
||||||
|
p = sum(list(x.numel() for x in m.parameters())) if isinstance(m, nn.Module) else 0 # parameters
|
||||||
|
print(f'{p:12}{flops:12.4g}{dtf:16.4g}{dtb:16.4g}{str(s_in):>24s}{str(s_out):>24s}')
|
||||||
|
|
||||||
|
|
||||||
|
def is_parallel(model):
|
||||||
|
return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
|
||||||
|
|
||||||
|
|
||||||
|
def intersect_dicts(da, db, exclude=()):
|
||||||
|
# Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
|
||||||
|
return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape}
|
||||||
|
|
||||||
|
|
||||||
|
def initialize_weights(model):
|
||||||
|
for m in model.modules():
|
||||||
|
t = type(m)
|
||||||
|
if t is nn.Conv2d:
|
||||||
|
pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
||||||
|
elif t is nn.BatchNorm2d:
|
||||||
|
m.eps = 1e-3
|
||||||
|
m.momentum = 0.03
|
||||||
|
elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6]:
|
||||||
|
m.inplace = True
|
||||||
|
|
||||||
|
|
||||||
|
def find_modules(model, mclass=nn.Conv2d):
|
||||||
|
# Finds layer indices matching module class 'mclass'
|
||||||
|
return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)]
|
||||||
|
|
||||||
|
|
||||||
|
def sparsity(model):
|
||||||
|
# Return global model sparsity
|
||||||
|
a, b = 0., 0.
|
||||||
|
for p in model.parameters():
|
||||||
|
a += p.numel()
|
||||||
|
b += (p == 0).sum()
|
||||||
|
return b / a
|
||||||
|
|
||||||
|
|
||||||
|
def prune(model, amount=0.3):
|
||||||
|
# Prune model to requested global sparsity
|
||||||
|
import torch.nn.utils.prune as prune
|
||||||
|
print('Pruning model... ', end='')
|
||||||
|
for name, m in model.named_modules():
|
||||||
|
if isinstance(m, nn.Conv2d):
|
||||||
|
prune.l1_unstructured(m, name='weight', amount=amount) # prune
|
||||||
|
prune.remove(m, 'weight') # make permanent
|
||||||
|
print(' %.3g global sparsity' % sparsity(model))
|
||||||
|
|
||||||
|
|
||||||
|
def fuse_conv_and_bn(conv, bn):
|
||||||
|
# Fuse convolution and batchnorm layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/
|
||||||
|
fusedconv = nn.Conv2d(conv.in_channels,
|
||||||
|
conv.out_channels,
|
||||||
|
kernel_size=conv.kernel_size,
|
||||||
|
stride=conv.stride,
|
||||||
|
padding=conv.padding,
|
||||||
|
groups=conv.groups,
|
||||||
|
bias=True).requires_grad_(False).to(conv.weight.device)
|
||||||
|
|
||||||
|
# prepare filters
|
||||||
|
w_conv = conv.weight.clone().view(conv.out_channels, -1)
|
||||||
|
w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
|
||||||
|
fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape))
|
||||||
|
|
||||||
|
# prepare spatial bias
|
||||||
|
b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
|
||||||
|
b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
|
||||||
|
fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
|
||||||
|
|
||||||
|
return fusedconv
|
||||||
|
|
||||||
|
|
||||||
|
def model_info(model, verbose=False, img_size=640):
|
||||||
|
# Model information. img_size may be int or list, i.e. img_size=640 or img_size=[640, 320]
|
||||||
|
n_p = sum(x.numel() for x in model.parameters()) # number parameters
|
||||||
|
n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients
|
||||||
|
if verbose:
|
||||||
|
print('%5s %40s %9s %12s %20s %10s %10s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma'))
|
||||||
|
for i, (name, p) in enumerate(model.named_parameters()):
|
||||||
|
name = name.replace('module_list.', '')
|
||||||
|
print('%5g %40s %9s %12g %20s %10.3g %10.3g' %
|
||||||
|
(i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
|
||||||
|
|
||||||
|
try: # FLOPS
|
||||||
|
from thop import profile
|
||||||
|
stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32
|
||||||
|
img = torch.zeros((1, model.yaml.get('ch', 3), stride, stride), device=next(model.parameters()).device) # input
|
||||||
|
flops = profile(deepcopy(model), inputs=(img,), verbose=False)[0] / 1E9 * 2 # stride GFLOPS
|
||||||
|
img_size = img_size if isinstance(img_size, list) else [img_size, img_size] # expand if int/float
|
||||||
|
fs = ', %.1f GFLOPS' % (flops * img_size[0] / stride * img_size[1] / stride) # 640x640 GFLOPS
|
||||||
|
except (ImportError, Exception):
|
||||||
|
fs = ''
|
||||||
|
|
||||||
|
logger.info(f"Model Summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}")
|
||||||
|
|
||||||
|
|
||||||
|
def load_classifier(name='resnet101', n=2):
|
||||||
|
# Loads a pretrained model reshaped to n-class output
|
||||||
|
model = torchvision.models.__dict__[name](pretrained=True)
|
||||||
|
|
||||||
|
# ResNet model properties
|
||||||
|
# input_size = [3, 224, 224]
|
||||||
|
# input_space = 'RGB'
|
||||||
|
# input_range = [0, 1]
|
||||||
|
# mean = [0.485, 0.456, 0.406]
|
||||||
|
# std = [0.229, 0.224, 0.225]
|
||||||
|
|
||||||
|
# Reshape output to n classes
|
||||||
|
filters = model.fc.weight.shape[1]
|
||||||
|
model.fc.bias = nn.Parameter(torch.zeros(n), requires_grad=True)
|
||||||
|
model.fc.weight = nn.Parameter(torch.zeros(n, filters), requires_grad=True)
|
||||||
|
model.fc.out_features = n
|
||||||
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
def scale_img(img, ratio=1.0, same_shape=False, gs=32): # img(16,3,256,416)
|
||||||
|
# scales img(bs,3,y,x) by ratio constrained to gs-multiple
|
||||||
|
if ratio == 1.0:
|
||||||
|
return img
|
||||||
|
else:
|
||||||
|
h, w = img.shape[2:]
|
||||||
|
s = (int(h * ratio), int(w * ratio)) # new size
|
||||||
|
img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize
|
||||||
|
if not same_shape: # pad/crop img
|
||||||
|
h, w = [math.ceil(x * ratio / gs) * gs for x in (h, w)]
|
||||||
|
return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean
|
||||||
|
|
||||||
|
|
||||||
|
def copy_attr(a, b, include=(), exclude=()):
|
||||||
|
# Copy attributes from b to a, options to only include [...] and to exclude [...]
|
||||||
|
for k, v in b.__dict__.items():
|
||||||
|
if (len(include) and k not in include) or k.startswith('_') or k in exclude:
|
||||||
|
continue
|
||||||
|
else:
|
||||||
|
setattr(a, k, v)
|
||||||
|
|
||||||
|
|
||||||
|
class ModelEMA:
|
||||||
|
""" Model Exponential Moving Average from https://github.com/rwightman/pytorch-image-models
|
||||||
|
Keep a moving average of everything in the model state_dict (parameters and buffers).
|
||||||
|
This is intended to allow functionality like
|
||||||
|
https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
|
||||||
|
A smoothed version of the weights is necessary for some training schemes to perform well.
|
||||||
|
This class is sensitive where it is initialized in the sequence of model init,
|
||||||
|
GPU assignment and distributed training wrappers.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, model, decay=0.9999, updates=0):
|
||||||
|
# Create EMA
|
||||||
|
self.ema = deepcopy(model.module if is_parallel(model) else model).eval() # FP32 EMA
|
||||||
|
# if next(model.parameters()).device.type != 'cpu':
|
||||||
|
# self.ema.half() # FP16 EMA
|
||||||
|
self.updates = updates # number of EMA updates
|
||||||
|
self.decay = lambda x: decay * (1 - math.exp(-x / 2000)) # decay exponential ramp (to help early epochs)
|
||||||
|
for p in self.ema.parameters():
|
||||||
|
p.requires_grad_(False)
|
||||||
|
|
||||||
|
def update(self, model):
|
||||||
|
# Update EMA parameters
|
||||||
|
with torch.no_grad():
|
||||||
|
self.updates += 1
|
||||||
|
d = self.decay(self.updates)
|
||||||
|
|
||||||
|
msd = model.module.state_dict() if is_parallel(model) else model.state_dict() # model state_dict
|
||||||
|
for k, v in self.ema.state_dict().items():
|
||||||
|
if v.dtype.is_floating_point:
|
||||||
|
v *= d
|
||||||
|
v += (1. - d) * msd[k].detach()
|
||||||
|
|
||||||
|
def update_attr(self, model, include=(), exclude=('process_group', 'reducer')):
|
||||||
|
# Update EMA attributes
|
||||||
|
copy_attr(self.ema, model, include, exclude)
|
0
utils/wandb_logging/__init__.py
Executable file
0
utils/wandb_logging/__init__.py
Executable file
26
utils/wandb_logging/log_dataset.py
Executable file
26
utils/wandb_logging/log_dataset.py
Executable file
@ -0,0 +1,26 @@
|
|||||||
|
import argparse
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import yaml
|
||||||
|
|
||||||
|
from wandb_utils import WandbLogger
|
||||||
|
from utils.datasets import LoadImagesAndLabels
|
||||||
|
|
||||||
|
WANDB_ARTIFACT_PREFIX = 'wandb-artifact://'
|
||||||
|
|
||||||
|
|
||||||
|
def create_dataset_artifact(opt):
|
||||||
|
with open(opt.data) as f:
|
||||||
|
data = yaml.load(f, Loader=yaml.SafeLoader) # data dict
|
||||||
|
logger = WandbLogger(opt, '', None, data, job_type='Dataset Creation')
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument('--data', type=str, default='data/coco128.yaml', help='data.yaml path')
|
||||||
|
parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
|
||||||
|
parser.add_argument('--project', type=str, default='YOLOv5', help='name of W&B Project')
|
||||||
|
opt = parser.parse_args()
|
||||||
|
opt.resume = False # Explicitly disallow resume check for dataset upload Job
|
||||||
|
|
||||||
|
create_dataset_artifact(opt)
|
305
utils/wandb_logging/wandb_utils.py
Executable file
305
utils/wandb_logging/wandb_utils.py
Executable file
@ -0,0 +1,305 @@
|
|||||||
|
import argparse
|
||||||
|
import json
|
||||||
|
import os
|
||||||
|
import shutil
|
||||||
|
import sys
|
||||||
|
import torch
|
||||||
|
import yaml
|
||||||
|
from datetime import datetime
|
||||||
|
from pathlib import Path
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
sys.path.append(str(Path(__file__).parent.parent.parent)) # add utils/ to path
|
||||||
|
from utils.datasets import LoadImagesAndLabels
|
||||||
|
from utils.datasets import img2label_paths
|
||||||
|
from utils.general import colorstr, xywh2xyxy, check_dataset
|
||||||
|
|
||||||
|
try:
|
||||||
|
import wandb
|
||||||
|
from wandb import init, finish
|
||||||
|
except ImportError:
|
||||||
|
wandb = None
|
||||||
|
|
||||||
|
WANDB_ARTIFACT_PREFIX = 'wandb-artifact://'
|
||||||
|
|
||||||
|
|
||||||
|
def remove_prefix(from_string, prefix=WANDB_ARTIFACT_PREFIX):
|
||||||
|
return from_string[len(prefix):]
|
||||||
|
|
||||||
|
|
||||||
|
def check_wandb_config_file(data_config_file):
|
||||||
|
wandb_config = '_wandb.'.join(data_config_file.rsplit('.', 1)) # updated data.yaml path
|
||||||
|
if Path(wandb_config).is_file():
|
||||||
|
return wandb_config
|
||||||
|
return data_config_file
|
||||||
|
|
||||||
|
def get_run_info(run_path):
|
||||||
|
run_path = Path(remove_prefix(run_path, WANDB_ARTIFACT_PREFIX))
|
||||||
|
run_id = run_path.stem
|
||||||
|
project = run_path.parent.stem
|
||||||
|
model_artifact_name = 'run_' + run_id + '_model'
|
||||||
|
return run_id, project, model_artifact_name
|
||||||
|
|
||||||
|
def check_wandb_resume(opt):
|
||||||
|
process_wandb_config_ddp_mode(opt) if opt.global_rank not in [-1, 0] else None
|
||||||
|
if isinstance(opt.resume, str):
|
||||||
|
if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
|
||||||
|
if opt.global_rank not in [-1, 0]: # For resuming DDP runs
|
||||||
|
run_id, project, model_artifact_name = get_run_info(opt.resume)
|
||||||
|
api = wandb.Api()
|
||||||
|
artifact = api.artifact(project + '/' + model_artifact_name + ':latest')
|
||||||
|
modeldir = artifact.download()
|
||||||
|
opt.weights = str(Path(modeldir) / "last.pt")
|
||||||
|
return True
|
||||||
|
return None
|
||||||
|
|
||||||
|
def process_wandb_config_ddp_mode(opt):
|
||||||
|
with open(opt.data) as f:
|
||||||
|
data_dict = yaml.load(f, Loader=yaml.SafeLoader) # data dict
|
||||||
|
train_dir, val_dir = None, None
|
||||||
|
if data_dict['train'].startswith(WANDB_ARTIFACT_PREFIX):
|
||||||
|
api = wandb.Api()
|
||||||
|
train_artifact = api.artifact(remove_prefix(data_dict['train']) + ':' + opt.artifact_alias)
|
||||||
|
train_dir = train_artifact.download()
|
||||||
|
train_path = Path(train_dir) / 'data/images/'
|
||||||
|
data_dict['train'] = str(train_path)
|
||||||
|
|
||||||
|
if data_dict['val'].startswith(WANDB_ARTIFACT_PREFIX):
|
||||||
|
api = wandb.Api()
|
||||||
|
val_artifact = api.artifact(remove_prefix(data_dict['val']) + ':' + opt.artifact_alias)
|
||||||
|
val_dir = val_artifact.download()
|
||||||
|
val_path = Path(val_dir) / 'data/images/'
|
||||||
|
data_dict['val'] = str(val_path)
|
||||||
|
if train_dir or val_dir:
|
||||||
|
ddp_data_path = str(Path(val_dir) / 'wandb_local_data.yaml')
|
||||||
|
with open(ddp_data_path, 'w') as f:
|
||||||
|
yaml.dump(data_dict, f)
|
||||||
|
opt.data = ddp_data_path
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
class WandbLogger():
|
||||||
|
def __init__(self, opt, name, run_id, data_dict, job_type='Training'):
|
||||||
|
# Pre-training routine --
|
||||||
|
self.job_type = job_type
|
||||||
|
self.wandb, self.wandb_run, self.data_dict = wandb, None if not wandb else wandb.run, data_dict
|
||||||
|
# It's more elegant to stick to 1 wandb.init call, but useful config data is overwritten in the WandbLogger's wandb.init call
|
||||||
|
if isinstance(opt.resume, str): # checks resume from artifact
|
||||||
|
if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
|
||||||
|
run_id, project, model_artifact_name = get_run_info(opt.resume)
|
||||||
|
model_artifact_name = WANDB_ARTIFACT_PREFIX + model_artifact_name
|
||||||
|
assert wandb, 'install wandb to resume wandb runs'
|
||||||
|
# Resume wandb-artifact:// runs here| workaround for not overwriting wandb.config
|
||||||
|
self.wandb_run = wandb.init(id=run_id, project=project, resume='allow')
|
||||||
|
opt.resume = model_artifact_name
|
||||||
|
elif self.wandb:
|
||||||
|
self.wandb_run = wandb.init(config=opt,
|
||||||
|
resume="allow",
|
||||||
|
project='YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem,
|
||||||
|
name=name,
|
||||||
|
job_type=job_type,
|
||||||
|
id=run_id) if not wandb.run else wandb.run
|
||||||
|
if self.wandb_run:
|
||||||
|
if self.job_type == 'Training':
|
||||||
|
if not opt.resume:
|
||||||
|
wandb_data_dict = self.check_and_upload_dataset(opt) if opt.upload_dataset else data_dict
|
||||||
|
# Info useful for resuming from artifacts
|
||||||
|
self.wandb_run.config.opt = vars(opt)
|
||||||
|
self.wandb_run.config.data_dict = wandb_data_dict
|
||||||
|
self.data_dict = self.setup_training(opt, data_dict)
|
||||||
|
if self.job_type == 'Dataset Creation':
|
||||||
|
self.data_dict = self.check_and_upload_dataset(opt)
|
||||||
|
else:
|
||||||
|
print(f"{colorstr('wandb: ')}Install Weights & Biases for YOLOv5 logging with 'pip install wandb' (recommended)")
|
||||||
|
|
||||||
|
|
||||||
|
def check_and_upload_dataset(self, opt):
|
||||||
|
assert wandb, 'Install wandb to upload dataset'
|
||||||
|
check_dataset(self.data_dict)
|
||||||
|
config_path = self.log_dataset_artifact(opt.data,
|
||||||
|
opt.single_cls,
|
||||||
|
'YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem)
|
||||||
|
print("Created dataset config file ", config_path)
|
||||||
|
with open(config_path) as f:
|
||||||
|
wandb_data_dict = yaml.load(f, Loader=yaml.SafeLoader)
|
||||||
|
return wandb_data_dict
|
||||||
|
|
||||||
|
def setup_training(self, opt, data_dict):
|
||||||
|
self.log_dict, self.current_epoch, self.log_imgs = {}, 0, 16 # Logging Constants
|
||||||
|
self.bbox_interval = opt.bbox_interval
|
||||||
|
if isinstance(opt.resume, str):
|
||||||
|
modeldir, _ = self.download_model_artifact(opt)
|
||||||
|
if modeldir:
|
||||||
|
self.weights = Path(modeldir) / "last.pt"
|
||||||
|
config = self.wandb_run.config
|
||||||
|
opt.weights, opt.save_period, opt.batch_size, opt.bbox_interval, opt.epochs, opt.hyp = str(
|
||||||
|
self.weights), config.save_period, config.total_batch_size, config.bbox_interval, config.epochs, \
|
||||||
|
config.opt['hyp']
|
||||||
|
data_dict = dict(self.wandb_run.config.data_dict) # eliminates the need for config file to resume
|
||||||
|
if 'val_artifact' not in self.__dict__: # If --upload_dataset is set, use the existing artifact, don't download
|
||||||
|
self.train_artifact_path, self.train_artifact = self.download_dataset_artifact(data_dict.get('train'),
|
||||||
|
opt.artifact_alias)
|
||||||
|
self.val_artifact_path, self.val_artifact = self.download_dataset_artifact(data_dict.get('val'),
|
||||||
|
opt.artifact_alias)
|
||||||
|
self.result_artifact, self.result_table, self.val_table, self.weights = None, None, None, None
|
||||||
|
if self.train_artifact_path is not None:
|
||||||
|
train_path = Path(self.train_artifact_path) / 'data/images/'
|
||||||
|
data_dict['train'] = str(train_path)
|
||||||
|
if self.val_artifact_path is not None:
|
||||||
|
val_path = Path(self.val_artifact_path) / 'data/images/'
|
||||||
|
data_dict['val'] = str(val_path)
|
||||||
|
self.val_table = self.val_artifact.get("val")
|
||||||
|
self.map_val_table_path()
|
||||||
|
if self.val_artifact is not None:
|
||||||
|
self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation")
|
||||||
|
self.result_table = wandb.Table(["epoch", "id", "prediction", "avg_confidence"])
|
||||||
|
if opt.bbox_interval == -1:
|
||||||
|
self.bbox_interval = opt.bbox_interval = (opt.epochs // 10) if opt.epochs > 10 else 1
|
||||||
|
return data_dict
|
||||||
|
|
||||||
|
def download_dataset_artifact(self, path, alias):
|
||||||
|
if path.startswith(WANDB_ARTIFACT_PREFIX):
|
||||||
|
dataset_artifact = wandb.use_artifact(remove_prefix(path, WANDB_ARTIFACT_PREFIX) + ":" + alias)
|
||||||
|
assert dataset_artifact is not None, "'Error: W&B dataset artifact doesn\'t exist'"
|
||||||
|
datadir = dataset_artifact.download()
|
||||||
|
return datadir, dataset_artifact
|
||||||
|
return None, None
|
||||||
|
|
||||||
|
def download_model_artifact(self, opt):
|
||||||
|
if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
|
||||||
|
model_artifact = wandb.use_artifact(remove_prefix(opt.resume, WANDB_ARTIFACT_PREFIX) + ":latest")
|
||||||
|
assert model_artifact is not None, 'Error: W&B model artifact doesn\'t exist'
|
||||||
|
modeldir = model_artifact.download()
|
||||||
|
epochs_trained = model_artifact.metadata.get('epochs_trained')
|
||||||
|
total_epochs = model_artifact.metadata.get('total_epochs')
|
||||||
|
assert epochs_trained < total_epochs, 'training to %g epochs is finished, nothing to resume.' % (
|
||||||
|
total_epochs)
|
||||||
|
return modeldir, model_artifact
|
||||||
|
return None, None
|
||||||
|
|
||||||
|
def log_model(self, path, opt, epoch, fitness_score, best_model=False):
|
||||||
|
model_artifact = wandb.Artifact('run_' + wandb.run.id + '_model', type='model', metadata={
|
||||||
|
'original_url': str(path),
|
||||||
|
'epochs_trained': epoch + 1,
|
||||||
|
'save period': opt.save_period,
|
||||||
|
'project': opt.project,
|
||||||
|
'total_epochs': opt.epochs,
|
||||||
|
'fitness_score': fitness_score
|
||||||
|
})
|
||||||
|
model_artifact.add_file(str(path / 'last.pt'), name='last.pt')
|
||||||
|
wandb.log_artifact(model_artifact,
|
||||||
|
aliases=['latest', 'epoch ' + str(self.current_epoch), 'best' if best_model else ''])
|
||||||
|
print("Saving model artifact on epoch ", epoch + 1)
|
||||||
|
|
||||||
|
def log_dataset_artifact(self, data_file, single_cls, project, overwrite_config=False):
|
||||||
|
with open(data_file) as f:
|
||||||
|
data = yaml.load(f, Loader=yaml.SafeLoader) # data dict
|
||||||
|
nc, names = (1, ['item']) if single_cls else (int(data['nc']), data['names'])
|
||||||
|
names = {k: v for k, v in enumerate(names)} # to index dictionary
|
||||||
|
self.train_artifact = self.create_dataset_table(LoadImagesAndLabels(
|
||||||
|
data['train']), names, name='train') if data.get('train') else None
|
||||||
|
self.val_artifact = self.create_dataset_table(LoadImagesAndLabels(
|
||||||
|
data['val']), names, name='val') if data.get('val') else None
|
||||||
|
if data.get('train'):
|
||||||
|
data['train'] = WANDB_ARTIFACT_PREFIX + str(Path(project) / 'train')
|
||||||
|
if data.get('val'):
|
||||||
|
data['val'] = WANDB_ARTIFACT_PREFIX + str(Path(project) / 'val')
|
||||||
|
path = data_file if overwrite_config else '_wandb.'.join(data_file.rsplit('.', 1)) # updated data.yaml path
|
||||||
|
data.pop('download', None)
|
||||||
|
with open(path, 'w') as f:
|
||||||
|
yaml.dump(data, f)
|
||||||
|
|
||||||
|
if self.job_type == 'Training': # builds correct artifact pipeline graph
|
||||||
|
self.wandb_run.use_artifact(self.val_artifact)
|
||||||
|
self.wandb_run.use_artifact(self.train_artifact)
|
||||||
|
self.val_artifact.wait()
|
||||||
|
self.val_table = self.val_artifact.get('val')
|
||||||
|
self.map_val_table_path()
|
||||||
|
else:
|
||||||
|
self.wandb_run.log_artifact(self.train_artifact)
|
||||||
|
self.wandb_run.log_artifact(self.val_artifact)
|
||||||
|
return path
|
||||||
|
|
||||||
|
def map_val_table_path(self):
|
||||||
|
self.val_table_map = {}
|
||||||
|
print("Mapping dataset")
|
||||||
|
for i, data in enumerate(tqdm(self.val_table.data)):
|
||||||
|
self.val_table_map[data[3]] = data[0]
|
||||||
|
|
||||||
|
def create_dataset_table(self, dataset, class_to_id, name='dataset'):
|
||||||
|
# TODO: Explore multiprocessing to slpit this loop parallely| This is essential for speeding up the the logging
|
||||||
|
artifact = wandb.Artifact(name=name, type="dataset")
|
||||||
|
for img_file in tqdm([dataset.path]) if Path(dataset.path).is_dir() else tqdm(dataset.img_files):
|
||||||
|
if Path(img_file).is_dir():
|
||||||
|
artifact.add_dir(img_file, name='data/images')
|
||||||
|
labels_path = 'labels'.join(dataset.path.rsplit('images', 1))
|
||||||
|
artifact.add_dir(labels_path, name='data/labels')
|
||||||
|
else:
|
||||||
|
artifact.add_file(img_file, name='data/images/' + Path(img_file).name)
|
||||||
|
label_file = Path(img2label_paths([img_file])[0])
|
||||||
|
artifact.add_file(str(label_file),
|
||||||
|
name='data/labels/' + label_file.name) if label_file.exists() else None
|
||||||
|
table = wandb.Table(columns=["id", "train_image", "Classes", "name"])
|
||||||
|
class_set = wandb.Classes([{'id': id, 'name': name} for id, name in class_to_id.items()])
|
||||||
|
for si, (img, labels, paths, shapes) in enumerate(tqdm(dataset)):
|
||||||
|
height, width = shapes[0]
|
||||||
|
labels[:, 2:] = (xywh2xyxy(labels[:, 2:].view(-1, 4))) * torch.Tensor([width, height, width, height])
|
||||||
|
box_data, img_classes = [], {}
|
||||||
|
for cls, *xyxy in labels[:, 1:].tolist():
|
||||||
|
cls = int(cls)
|
||||||
|
box_data.append({"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
|
||||||
|
"class_id": cls,
|
||||||
|
"box_caption": "%s" % (class_to_id[cls]),
|
||||||
|
"scores": {"acc": 1},
|
||||||
|
"domain": "pixel"})
|
||||||
|
img_classes[cls] = class_to_id[cls]
|
||||||
|
boxes = {"ground_truth": {"box_data": box_data, "class_labels": class_to_id}} # inference-space
|
||||||
|
table.add_data(si, wandb.Image(paths, classes=class_set, boxes=boxes), json.dumps(img_classes),
|
||||||
|
Path(paths).name)
|
||||||
|
artifact.add(table, name)
|
||||||
|
return artifact
|
||||||
|
|
||||||
|
def log_training_progress(self, predn, path, names):
|
||||||
|
if self.val_table and self.result_table:
|
||||||
|
class_set = wandb.Classes([{'id': id, 'name': name} for id, name in names.items()])
|
||||||
|
box_data = []
|
||||||
|
total_conf = 0
|
||||||
|
for *xyxy, conf, cls in predn.tolist():
|
||||||
|
if conf >= 0.25:
|
||||||
|
box_data.append(
|
||||||
|
{"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
|
||||||
|
"class_id": int(cls),
|
||||||
|
"box_caption": "%s %.3f" % (names[cls], conf),
|
||||||
|
"scores": {"class_score": conf},
|
||||||
|
"domain": "pixel"})
|
||||||
|
total_conf = total_conf + conf
|
||||||
|
boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space
|
||||||
|
id = self.val_table_map[Path(path).name]
|
||||||
|
self.result_table.add_data(self.current_epoch,
|
||||||
|
id,
|
||||||
|
wandb.Image(self.val_table.data[id][1], boxes=boxes, classes=class_set),
|
||||||
|
total_conf / max(1, len(box_data))
|
||||||
|
)
|
||||||
|
|
||||||
|
def log(self, log_dict):
|
||||||
|
if self.wandb_run:
|
||||||
|
for key, value in log_dict.items():
|
||||||
|
self.log_dict[key] = value
|
||||||
|
|
||||||
|
def end_epoch(self, best_result=False):
|
||||||
|
if self.wandb_run:
|
||||||
|
wandb.log(self.log_dict)
|
||||||
|
self.log_dict = {}
|
||||||
|
if self.result_artifact:
|
||||||
|
train_results = wandb.JoinedTable(self.val_table, self.result_table, "id")
|
||||||
|
self.result_artifact.add(train_results, 'result')
|
||||||
|
wandb.log_artifact(self.result_artifact, aliases=['latest', 'epoch ' + str(self.current_epoch),
|
||||||
|
('best' if best_result else '')])
|
||||||
|
self.result_table = wandb.Table(["epoch", "id", "prediction", "avg_confidence"])
|
||||||
|
self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation")
|
||||||
|
|
||||||
|
def finish_run(self):
|
||||||
|
if self.wandb_run:
|
||||||
|
if self.log_dict:
|
||||||
|
wandb.log(self.log_dict)
|
||||||
|
wandb.run.finish()
|
66
voc_label.py
Normal file
66
voc_label.py
Normal file
@ -0,0 +1,66 @@
|
|||||||
|
#标签xml转txt
|
||||||
|
import xml.etree.ElementTree as ET
|
||||||
|
import os
|
||||||
|
from os import getcwd
|
||||||
|
|
||||||
|
sets = ['train', 'val', 'test']
|
||||||
|
classes = ["6925303773908", "6924743915848", "6920152471616", "6920005772716", "6902227018162",
|
||||||
|
"6920459905012", "6972194461407", "6935284412918", "6921489033706", "6904012526494",
|
||||||
|
"6923644272159", "6924882486100", "6956511907458"]
|
||||||
|
abs_path = os.getcwd()
|
||||||
|
print(abs_path)
|
||||||
|
|
||||||
|
def convert(size, box):
|
||||||
|
dw = 1. / (size[0])
|
||||||
|
dh = 1. / (size[1])
|
||||||
|
x = (box[0] + box[1]) / 2.0 - 1
|
||||||
|
y = (box[2] + box[3]) / 2.0 - 1
|
||||||
|
w = box[1] - box[0]
|
||||||
|
h = box[3] - box[2]
|
||||||
|
x = x * dw
|
||||||
|
y = y * dh
|
||||||
|
w = w * dw
|
||||||
|
h = h * dh
|
||||||
|
return x, y, w, h
|
||||||
|
|
||||||
|
def convert_annotation(image_id):
|
||||||
|
in_file = open(r'/home/nxy/nxy_project/python_project/Data/paper_data/Annotations/%s.xml' % (image_id), encoding='UTF-8')
|
||||||
|
out_file = open(r'/home/nxy/nxy_project/python_project/Data/paper_data/labels/%s.txt' % (image_id), 'w')
|
||||||
|
tree = ET.parse(in_file)
|
||||||
|
root = tree.getroot()
|
||||||
|
size = root.find('size')
|
||||||
|
w = int(size.find('width').text)
|
||||||
|
h = int(size.find('height').text)
|
||||||
|
for obj in root.iter('object'):
|
||||||
|
# difficult = obj.find('difficult').text
|
||||||
|
# difficult = obj.find('Difficult').text
|
||||||
|
cls = obj.find('name').text
|
||||||
|
# if cls not in classes or int(difficult) == 1:
|
||||||
|
# continue
|
||||||
|
cls_id = classes.index(cls)
|
||||||
|
xmlbox = obj.find('bndbox')
|
||||||
|
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
|
||||||
|
float(xmlbox.find('ymax').text))
|
||||||
|
b1, b2, b3, b4 = b
|
||||||
|
# 标注越界修正
|
||||||
|
if b2 > w:
|
||||||
|
b2 = w
|
||||||
|
if b4 > h:
|
||||||
|
b4 = h
|
||||||
|
b = (b1, b2, b3, b4)
|
||||||
|
bb = convert((w, h), b)
|
||||||
|
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
|
||||||
|
|
||||||
|
wd = getcwd()
|
||||||
|
for image_set in sets:
|
||||||
|
if not os.path.exists(r'/home/nxy/nxy_project/python_project/Data/paper_data/labels'):
|
||||||
|
os.makedirs(r'/home/nxy/nxy_project/python_project/Data/paper_data/labels')
|
||||||
|
image_ids = open(r'/home/nxy/nxy_project/python_project/Data/paper_data/ImageSets/Main/%s.txt' % (image_set)).read().strip().split()
|
||||||
|
list_file = open('/home/nxy/nxy_project/python_project/Data/paper_data/%s.txt' % (image_set), 'w')
|
||||||
|
for image_id in image_ids:
|
||||||
|
list_file.write(abs_path + '/paper_data/images/%s.jpg\n' % (image_id))
|
||||||
|
convert_annotation(image_id)
|
||||||
|
print("Converting...")
|
||||||
|
list_file.close()
|
||||||
|
|
||||||
|
#(yv5_1) pfc@ps:/home/nxy/nxy_project/python_project/Data/paper_data/labels$ mv ./* /home/nxy/nxy_project/python_project/Data/zhanting_add/labels/train/
|
12
weights/download_weights.sh
Executable file
12
weights/download_weights.sh
Executable file
@ -0,0 +1,12 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
# Download latest models from https://github.com/ultralytics/yolov5/releases
|
||||||
|
# Usage:
|
||||||
|
# $ bash weights/download_weights.sh
|
||||||
|
|
||||||
|
python - <<EOF
|
||||||
|
from utils.google_utils import attempt_download
|
||||||
|
|
||||||
|
for x in ['s', 'm', 'l', 'x']:
|
||||||
|
attempt_download(f'yolov5{x}.pt')
|
||||||
|
|
||||||
|
EOF
|
195
weights/yolov5s.param
Executable file
195
weights/yolov5s.param
Executable file
@ -0,0 +1,195 @@
|
|||||||
|
7767517
|
||||||
|
192 228
|
||||||
|
Input images 0 1 images
|
||||||
|
YoloV5Focus focus 1 1 images 207
|
||||||
|
Concat Concat_40 4 1 176 186 196 206 207 0=0
|
||||||
|
Convolution Conv_41 1 1 207 208 0=32 1=3 11=3 2=1 12=1 3=1 13=1 4=1 14=1 15=1 16=1 5=1 6=3456
|
||||||
|
HardSwish Div_49 1 1 208 216 0=1.666667e-01 1=5.000000e-01
|
||||||
|
Convolution Conv_50 1 1 216 217 0=64 1=3 11=3 2=1 12=1 3=2 13=2 4=1 14=1 15=1 16=1 5=1 6=18432
|
||||||
|
HardSwish Div_58 1 1 217 225 0=1.666667e-01 1=5.000000e-01
|
||||||
|
Split splitncnn_0 1 2 225 225_splitncnn_0 225_splitncnn_1
|
||||||
|
Convolution Conv_59 1 1 225_splitncnn_1 226 0=32 1=1 11=1 2=1 12=1 3=1 13=1 4=0 14=0 15=0 16=0 5=1 6=2048
|
||||||
|
HardSwish Div_67 1 1 226 234 0=1.666667e-01 1=5.000000e-01
|
||||||
|
Split splitncnn_1 1 2 234 234_splitncnn_0 234_splitncnn_1
|
||||||
|
Convolution Conv_68 1 1 234_splitncnn_1 235 0=32 1=1 11=1 2=1 12=1 3=1 13=1 4=0 14=0 15=0 16=0 5=1 6=1024
|
||||||
|
HardSwish Div_76 1 1 235 243 0=1.666667e-01 1=5.000000e-01
|
||||||
|
Convolution Conv_77 1 1 243 244 0=32 1=3 11=3 2=1 12=1 3=1 13=1 4=1 14=1 15=1 16=1 5=1 6=9216
|
||||||
|
HardSwish Div_85 1 1 244 252 0=1.666667e-01 1=5.000000e-01
|
||||||
|
BinaryOp Add_86 2 1 234_splitncnn_0 252 253 0=0
|
||||||
|
Convolution Conv_87 1 1 253 254 0=32 1=1 11=1 2=1 12=1 3=1 13=1 4=0 14=0 15=0 16=0 5=0 6=1024
|
||||||
|
Convolution Conv_88 1 1 225_splitncnn_0 255 0=32 1=1 11=1 2=1 12=1 3=1 13=1 4=0 14=0 15=0 16=0 5=0 6=2048
|
||||||
|
Concat Concat_89 2 1 254 255 256 0=0
|
||||||
|
BatchNorm BatchNormalization_90 1 1 256 257 0=64
|
||||||
|
ReLU LeakyRelu_91 1 1 257 258 0=1.000000e-01
|
||||||
|
Convolution Conv_92 1 1 258 259 0=64 1=1 11=1 2=1 12=1 3=1 13=1 4=0 14=0 15=0 16=0 5=1 6=4096
|
||||||
|
HardSwish Div_100 1 1 259 267 0=1.666667e-01 1=5.000000e-01
|
||||||
|
Convolution Conv_101 1 1 267 268 0=128 1=3 11=3 2=1 12=1 3=2 13=2 4=1 14=1 15=1 16=1 5=1 6=73728
|
||||||
|
HardSwish Div_109 1 1 268 276 0=1.666667e-01 1=5.000000e-01
|
||||||
|
Split splitncnn_2 1 2 276 276_splitncnn_0 276_splitncnn_1
|
||||||
|
Convolution Conv_110 1 1 276_splitncnn_1 277 0=64 1=1 11=1 2=1 12=1 3=1 13=1 4=0 14=0 15=0 16=0 5=1 6=8192
|
||||||
|
HardSwish Div_118 1 1 277 285 0=1.666667e-01 1=5.000000e-01
|
||||||
|
Split splitncnn_3 1 2 285 285_splitncnn_0 285_splitncnn_1
|
||||||
|
Convolution Conv_119 1 1 285_splitncnn_1 286 0=64 1=1 11=1 2=1 12=1 3=1 13=1 4=0 14=0 15=0 16=0 5=1 6=4096
|
||||||
|
HardSwish Div_127 1 1 286 294 0=1.666667e-01 1=5.000000e-01
|
||||||
|
Convolution Conv_128 1 1 294 295 0=64 1=3 11=3 2=1 12=1 3=1 13=1 4=1 14=1 15=1 16=1 5=1 6=36864
|
||||||
|
HardSwish Div_136 1 1 295 303 0=1.666667e-01 1=5.000000e-01
|
||||||
|
BinaryOp Add_137 2 1 285_splitncnn_0 303 304 0=0
|
||||||
|
Split splitncnn_4 1 2 304 304_splitncnn_0 304_splitncnn_1
|
||||||
|
Convolution Conv_138 1 1 304_splitncnn_1 305 0=64 1=1 11=1 2=1 12=1 3=1 13=1 4=0 14=0 15=0 16=0 5=1 6=4096
|
||||||
|
HardSwish Div_146 1 1 305 313 0=1.666667e-01 1=5.000000e-01
|
||||||
|
Convolution Conv_147 1 1 313 314 0=64 1=3 11=3 2=1 12=1 3=1 13=1 4=1 14=1 15=1 16=1 5=1 6=36864
|
||||||
|
HardSwish Div_155 1 1 314 322 0=1.666667e-01 1=5.000000e-01
|
||||||
|
BinaryOp Add_156 2 1 304_splitncnn_0 322 323 0=0
|
||||||
|
Split splitncnn_5 1 2 323 323_splitncnn_0 323_splitncnn_1
|
||||||
|
Convolution Conv_157 1 1 323_splitncnn_1 324 0=64 1=1 11=1 2=1 12=1 3=1 13=1 4=0 14=0 15=0 16=0 5=1 6=4096
|
||||||
|
HardSwish Div_165 1 1 324 332 0=1.666667e-01 1=5.000000e-01
|
||||||
|
Convolution Conv_166 1 1 332 333 0=64 1=3 11=3 2=1 12=1 3=1 13=1 4=1 14=1 15=1 16=1 5=1 6=36864
|
||||||
|
HardSwish Div_174 1 1 333 341 0=1.666667e-01 1=5.000000e-01
|
||||||
|
BinaryOp Add_175 2 1 323_splitncnn_0 341 342 0=0
|
||||||
|
Convolution Conv_176 1 1 342 343 0=64 1=1 11=1 2=1 12=1 3=1 13=1 4=0 14=0 15=0 16=0 5=0 6=4096
|
||||||
|
Convolution Conv_177 1 1 276_splitncnn_0 344 0=64 1=1 11=1 2=1 12=1 3=1 13=1 4=0 14=0 15=0 16=0 5=0 6=8192
|
||||||
|
Concat Concat_178 2 1 343 344 345 0=0
|
||||||
|
BatchNorm BatchNormalization_179 1 1 345 346 0=128
|
||||||
|
ReLU LeakyRelu_180 1 1 346 347 0=1.000000e-01
|
||||||
|
Convolution Conv_181 1 1 347 348 0=128 1=1 11=1 2=1 12=1 3=1 13=1 4=0 14=0 15=0 16=0 5=1 6=16384
|
||||||
|
HardSwish Div_189 1 1 348 356 0=1.666667e-01 1=5.000000e-01
|
||||||
|
Split splitncnn_6 1 2 356 356_splitncnn_0 356_splitncnn_1
|
||||||
|
Convolution Conv_190 1 1 356_splitncnn_1 357 0=256 1=3 11=3 2=1 12=1 3=2 13=2 4=1 14=1 15=1 16=1 5=1 6=294912
|
||||||
|
HardSwish Div_198 1 1 357 365 0=1.666667e-01 1=5.000000e-01
|
||||||
|
Split splitncnn_7 1 2 365 365_splitncnn_0 365_splitncnn_1
|
||||||
|
Convolution Conv_199 1 1 365_splitncnn_1 366 0=128 1=1 11=1 2=1 12=1 3=1 13=1 4=0 14=0 15=0 16=0 5=1 6=32768
|
||||||
|
HardSwish Div_207 1 1 366 374 0=1.666667e-01 1=5.000000e-01
|
||||||
|
Split splitncnn_8 1 2 374 374_splitncnn_0 374_splitncnn_1
|
||||||
|
Convolution Conv_208 1 1 374_splitncnn_1 375 0=128 1=1 11=1 2=1 12=1 3=1 13=1 4=0 14=0 15=0 16=0 5=1 6=16384
|
||||||
|
HardSwish Div_216 1 1 375 383 0=1.666667e-01 1=5.000000e-01
|
||||||
|
Convolution Conv_217 1 1 383 384 0=128 1=3 11=3 2=1 12=1 3=1 13=1 4=1 14=1 15=1 16=1 5=1 6=147456
|
||||||
|
HardSwish Div_225 1 1 384 392 0=1.666667e-01 1=5.000000e-01
|
||||||
|
BinaryOp Add_226 2 1 374_splitncnn_0 392 393 0=0
|
||||||
|
Split splitncnn_9 1 2 393 393_splitncnn_0 393_splitncnn_1
|
||||||
|
Convolution Conv_227 1 1 393_splitncnn_1 394 0=128 1=1 11=1 2=1 12=1 3=1 13=1 4=0 14=0 15=0 16=0 5=1 6=16384
|
||||||
|
HardSwish Div_235 1 1 394 402 0=1.666667e-01 1=5.000000e-01
|
||||||
|
Convolution Conv_236 1 1 402 403 0=128 1=3 11=3 2=1 12=1 3=1 13=1 4=1 14=1 15=1 16=1 5=1 6=147456
|
||||||
|
HardSwish Div_244 1 1 403 411 0=1.666667e-01 1=5.000000e-01
|
||||||
|
BinaryOp Add_245 2 1 393_splitncnn_0 411 412 0=0
|
||||||
|
Split splitncnn_10 1 2 412 412_splitncnn_0 412_splitncnn_1
|
||||||
|
Convolution Conv_246 1 1 412_splitncnn_1 413 0=128 1=1 11=1 2=1 12=1 3=1 13=1 4=0 14=0 15=0 16=0 5=1 6=16384
|
||||||
|
HardSwish Div_254 1 1 413 421 0=1.666667e-01 1=5.000000e-01
|
||||||
|
Convolution Conv_255 1 1 421 422 0=128 1=3 11=3 2=1 12=1 3=1 13=1 4=1 14=1 15=1 16=1 5=1 6=147456
|
||||||
|
HardSwish Div_263 1 1 422 430 0=1.666667e-01 1=5.000000e-01
|
||||||
|
BinaryOp Add_264 2 1 412_splitncnn_0 430 431 0=0
|
||||||
|
Convolution Conv_265 1 1 431 432 0=128 1=1 11=1 2=1 12=1 3=1 13=1 4=0 14=0 15=0 16=0 5=0 6=16384
|
||||||
|
Convolution Conv_266 1 1 365_splitncnn_0 433 0=128 1=1 11=1 2=1 12=1 3=1 13=1 4=0 14=0 15=0 16=0 5=0 6=32768
|
||||||
|
Concat Concat_267 2 1 432 433 434 0=0
|
||||||
|
BatchNorm BatchNormalization_268 1 1 434 435 0=256
|
||||||
|
ReLU LeakyRelu_269 1 1 435 436 0=1.000000e-01
|
||||||
|
Convolution Conv_270 1 1 436 437 0=256 1=1 11=1 2=1 12=1 3=1 13=1 4=0 14=0 15=0 16=0 5=1 6=65536
|
||||||
|
HardSwish Div_278 1 1 437 445 0=1.666667e-01 1=5.000000e-01
|
||||||
|
Split splitncnn_11 1 2 445 445_splitncnn_0 445_splitncnn_1
|
||||||
|
Convolution Conv_279 1 1 445_splitncnn_1 446 0=512 1=3 11=3 2=1 12=1 3=2 13=2 4=1 14=1 15=1 16=1 5=1 6=1179648
|
||||||
|
HardSwish Div_287 1 1 446 454 0=1.666667e-01 1=5.000000e-01
|
||||||
|
Convolution Conv_288 1 1 454 455 0=256 1=1 11=1 2=1 12=1 3=1 13=1 4=0 14=0 15=0 16=0 5=1 6=131072
|
||||||
|
HardSwish Div_296 1 1 455 463 0=1.666667e-01 1=5.000000e-01
|
||||||
|
Split splitncnn_12 1 4 463 463_splitncnn_0 463_splitncnn_1 463_splitncnn_2 463_splitncnn_3
|
||||||
|
Pooling MaxPool_297 1 1 463_splitncnn_3 464 0=0 1=5 11=5 2=1 12=1 3=2 13=2 14=2 15=2 5=1
|
||||||
|
Pooling MaxPool_298 1 1 463_splitncnn_2 465 0=0 1=9 11=9 2=1 12=1 3=4 13=4 14=4 15=4 5=1
|
||||||
|
Pooling MaxPool_299 1 1 463_splitncnn_1 466 0=0 1=13 11=13 2=1 12=1 3=6 13=6 14=6 15=6 5=1
|
||||||
|
Concat Concat_300 4 1 463_splitncnn_0 464 465 466 467 0=0
|
||||||
|
Convolution Conv_301 1 1 467 468 0=512 1=1 11=1 2=1 12=1 3=1 13=1 4=0 14=0 15=0 16=0 5=1 6=524288
|
||||||
|
HardSwish Div_309 1 1 468 476 0=1.666667e-01 1=5.000000e-01
|
||||||
|
Split splitncnn_13 1 2 476 476_splitncnn_0 476_splitncnn_1
|
||||||
|
Convolution Conv_310 1 1 476_splitncnn_1 477 0=256 1=1 11=1 2=1 12=1 3=1 13=1 4=0 14=0 15=0 16=0 5=1 6=131072
|
||||||
|
HardSwish Div_318 1 1 477 485 0=1.666667e-01 1=5.000000e-01
|
||||||
|
Convolution Conv_319 1 1 485 486 0=256 1=1 11=1 2=1 12=1 3=1 13=1 4=0 14=0 15=0 16=0 5=1 6=65536
|
||||||
|
HardSwish Div_327 1 1 486 494 0=1.666667e-01 1=5.000000e-01
|
||||||
|
Convolution Conv_328 1 1 494 495 0=256 1=3 11=3 2=1 12=1 3=1 13=1 4=1 14=1 15=1 16=1 5=1 6=589824
|
||||||
|
HardSwish Div_336 1 1 495 503 0=1.666667e-01 1=5.000000e-01
|
||||||
|
Convolution Conv_337 1 1 503 504 0=256 1=1 11=1 2=1 12=1 3=1 13=1 4=0 14=0 15=0 16=0 5=0 6=65536
|
||||||
|
Convolution Conv_338 1 1 476_splitncnn_0 505 0=256 1=1 11=1 2=1 12=1 3=1 13=1 4=0 14=0 15=0 16=0 5=0 6=131072
|
||||||
|
Concat Concat_339 2 1 504 505 506 0=0
|
||||||
|
BatchNorm BatchNormalization_340 1 1 506 507 0=512
|
||||||
|
ReLU LeakyRelu_341 1 1 507 508 0=1.000000e-01
|
||||||
|
Convolution Conv_342 1 1 508 509 0=512 1=1 11=1 2=1 12=1 3=1 13=1 4=0 14=0 15=0 16=0 5=1 6=262144
|
||||||
|
HardSwish Div_350 1 1 509 517 0=1.666667e-01 1=5.000000e-01
|
||||||
|
Convolution Conv_351 1 1 517 518 0=256 1=1 11=1 2=1 12=1 3=1 13=1 4=0 14=0 15=0 16=0 5=1 6=131072
|
||||||
|
HardSwish Div_359 1 1 518 526 0=1.666667e-01 1=5.000000e-01
|
||||||
|
Split splitncnn_14 1 2 526 526_splitncnn_0 526_splitncnn_1
|
||||||
|
Interp Resize_361 1 1 526_splitncnn_1 531 0=1 1=2.000000e+00 2=2.000000e+00 3=0 4=0 6=0
|
||||||
|
Concat Concat_362 2 1 531 445_splitncnn_0 532 0=0
|
||||||
|
Split splitncnn_15 1 2 532 532_splitncnn_0 532_splitncnn_1
|
||||||
|
Convolution Conv_363 1 1 532_splitncnn_1 533 0=128 1=1 11=1 2=1 12=1 3=1 13=1 4=0 14=0 15=0 16=0 5=1 6=65536
|
||||||
|
HardSwish Div_371 1 1 533 541 0=1.666667e-01 1=5.000000e-01
|
||||||
|
Convolution Conv_372 1 1 541 542 0=128 1=1 11=1 2=1 12=1 3=1 13=1 4=0 14=0 15=0 16=0 5=1 6=16384
|
||||||
|
HardSwish Div_380 1 1 542 550 0=1.666667e-01 1=5.000000e-01
|
||||||
|
Convolution Conv_381 1 1 550 551 0=128 1=3 11=3 2=1 12=1 3=1 13=1 4=1 14=1 15=1 16=1 5=1 6=147456
|
||||||
|
HardSwish Div_389 1 1 551 559 0=1.666667e-01 1=5.000000e-01
|
||||||
|
Convolution Conv_390 1 1 559 560 0=128 1=1 11=1 2=1 12=1 3=1 13=1 4=0 14=0 15=0 16=0 5=0 6=16384
|
||||||
|
Convolution Conv_391 1 1 532_splitncnn_0 561 0=128 1=1 11=1 2=1 12=1 3=1 13=1 4=0 14=0 15=0 16=0 5=0 6=65536
|
||||||
|
Concat Concat_392 2 1 560 561 562 0=0
|
||||||
|
BatchNorm BatchNormalization_393 1 1 562 563 0=256
|
||||||
|
ReLU LeakyRelu_394 1 1 563 564 0=1.000000e-01
|
||||||
|
Convolution Conv_395 1 1 564 565 0=256 1=1 11=1 2=1 12=1 3=1 13=1 4=0 14=0 15=0 16=0 5=1 6=65536
|
||||||
|
HardSwish Div_403 1 1 565 573 0=1.666667e-01 1=5.000000e-01
|
||||||
|
Convolution Conv_404 1 1 573 574 0=128 1=1 11=1 2=1 12=1 3=1 13=1 4=0 14=0 15=0 16=0 5=1 6=32768
|
||||||
|
HardSwish Div_412 1 1 574 582 0=1.666667e-01 1=5.000000e-01
|
||||||
|
Split splitncnn_16 1 2 582 582_splitncnn_0 582_splitncnn_1
|
||||||
|
Interp Resize_414 1 1 582_splitncnn_1 587 0=1 1=2.000000e+00 2=2.000000e+00 3=0 4=0 6=0
|
||||||
|
Concat Concat_415 2 1 587 356_splitncnn_0 588 0=0
|
||||||
|
Split splitncnn_17 1 2 588 588_splitncnn_0 588_splitncnn_1
|
||||||
|
Convolution Conv_416 1 1 588_splitncnn_1 589 0=64 1=1 11=1 2=1 12=1 3=1 13=1 4=0 14=0 15=0 16=0 5=1 6=16384
|
||||||
|
HardSwish Div_424 1 1 589 597 0=1.666667e-01 1=5.000000e-01
|
||||||
|
Convolution Conv_425 1 1 597 598 0=64 1=1 11=1 2=1 12=1 3=1 13=1 4=0 14=0 15=0 16=0 5=1 6=4096
|
||||||
|
HardSwish Div_433 1 1 598 606 0=1.666667e-01 1=5.000000e-01
|
||||||
|
Convolution Conv_434 1 1 606 607 0=64 1=3 11=3 2=1 12=1 3=1 13=1 4=1 14=1 15=1 16=1 5=1 6=36864
|
||||||
|
HardSwish Div_442 1 1 607 615 0=1.666667e-01 1=5.000000e-01
|
||||||
|
Convolution Conv_443 1 1 615 616 0=64 1=1 11=1 2=1 12=1 3=1 13=1 4=0 14=0 15=0 16=0 5=0 6=4096
|
||||||
|
Convolution Conv_444 1 1 588_splitncnn_0 617 0=64 1=1 11=1 2=1 12=1 3=1 13=1 4=0 14=0 15=0 16=0 5=0 6=16384
|
||||||
|
Concat Concat_445 2 1 616 617 618 0=0
|
||||||
|
BatchNorm BatchNormalization_446 1 1 618 619 0=128
|
||||||
|
ReLU LeakyRelu_447 1 1 619 620 0=1.000000e-01
|
||||||
|
Convolution Conv_448 1 1 620 621 0=128 1=1 11=1 2=1 12=1 3=1 13=1 4=0 14=0 15=0 16=0 5=1 6=16384
|
||||||
|
HardSwish Div_456 1 1 621 629 0=1.666667e-01 1=5.000000e-01
|
||||||
|
Split splitncnn_18 1 2 629 629_splitncnn_0 629_splitncnn_1
|
||||||
|
Convolution Conv_457 1 1 629_splitncnn_1 630 0=128 1=3 11=3 2=1 12=1 3=2 13=2 4=1 14=1 15=1 16=1 5=1 6=147456
|
||||||
|
HardSwish Div_465 1 1 630 638 0=1.666667e-01 1=5.000000e-01
|
||||||
|
Concat Concat_466 2 1 638 582_splitncnn_0 639 0=0
|
||||||
|
Split splitncnn_19 1 2 639 639_splitncnn_0 639_splitncnn_1
|
||||||
|
Convolution Conv_467 1 1 639_splitncnn_1 640 0=128 1=1 11=1 2=1 12=1 3=1 13=1 4=0 14=0 15=0 16=0 5=1 6=32768
|
||||||
|
HardSwish Div_475 1 1 640 648 0=1.666667e-01 1=5.000000e-01
|
||||||
|
Convolution Conv_476 1 1 648 649 0=128 1=1 11=1 2=1 12=1 3=1 13=1 4=0 14=0 15=0 16=0 5=1 6=16384
|
||||||
|
HardSwish Div_484 1 1 649 657 0=1.666667e-01 1=5.000000e-01
|
||||||
|
Convolution Conv_485 1 1 657 658 0=128 1=3 11=3 2=1 12=1 3=1 13=1 4=1 14=1 15=1 16=1 5=1 6=147456
|
||||||
|
HardSwish Div_493 1 1 658 666 0=1.666667e-01 1=5.000000e-01
|
||||||
|
Convolution Conv_494 1 1 666 667 0=128 1=1 11=1 2=1 12=1 3=1 13=1 4=0 14=0 15=0 16=0 5=0 6=16384
|
||||||
|
Convolution Conv_495 1 1 639_splitncnn_0 668 0=128 1=1 11=1 2=1 12=1 3=1 13=1 4=0 14=0 15=0 16=0 5=0 6=32768
|
||||||
|
Concat Concat_496 2 1 667 668 669 0=0
|
||||||
|
BatchNorm BatchNormalization_497 1 1 669 670 0=256
|
||||||
|
ReLU LeakyRelu_498 1 1 670 671 0=1.000000e-01
|
||||||
|
Convolution Conv_499 1 1 671 672 0=256 1=1 11=1 2=1 12=1 3=1 13=1 4=0 14=0 15=0 16=0 5=1 6=65536
|
||||||
|
HardSwish Div_507 1 1 672 680 0=1.666667e-01 1=5.000000e-01
|
||||||
|
Split splitncnn_20 1 2 680 680_splitncnn_0 680_splitncnn_1
|
||||||
|
Convolution Conv_508 1 1 680_splitncnn_1 681 0=256 1=3 11=3 2=1 12=1 3=2 13=2 4=1 14=1 15=1 16=1 5=1 6=589824
|
||||||
|
HardSwish Div_516 1 1 681 689 0=1.666667e-01 1=5.000000e-01
|
||||||
|
Concat Concat_517 2 1 689 526_splitncnn_0 690 0=0
|
||||||
|
Split splitncnn_21 1 2 690 690_splitncnn_0 690_splitncnn_1
|
||||||
|
Convolution Conv_518 1 1 690_splitncnn_1 691 0=256 1=1 11=1 2=1 12=1 3=1 13=1 4=0 14=0 15=0 16=0 5=1 6=131072
|
||||||
|
HardSwish Div_526 1 1 691 699 0=1.666667e-01 1=5.000000e-01
|
||||||
|
Convolution Conv_527 1 1 699 700 0=256 1=1 11=1 2=1 12=1 3=1 13=1 4=0 14=0 15=0 16=0 5=1 6=65536
|
||||||
|
HardSwish Div_535 1 1 700 708 0=1.666667e-01 1=5.000000e-01
|
||||||
|
Convolution Conv_536 1 1 708 709 0=256 1=3 11=3 2=1 12=1 3=1 13=1 4=1 14=1 15=1 16=1 5=1 6=589824
|
||||||
|
HardSwish Div_544 1 1 709 717 0=1.666667e-01 1=5.000000e-01
|
||||||
|
Convolution Conv_545 1 1 717 718 0=256 1=1 11=1 2=1 12=1 3=1 13=1 4=0 14=0 15=0 16=0 5=0 6=65536
|
||||||
|
Convolution Conv_546 1 1 690_splitncnn_0 719 0=256 1=1 11=1 2=1 12=1 3=1 13=1 4=0 14=0 15=0 16=0 5=0 6=131072
|
||||||
|
Concat Concat_547 2 1 718 719 720 0=0
|
||||||
|
BatchNorm BatchNormalization_548 1 1 720 721 0=512
|
||||||
|
ReLU LeakyRelu_549 1 1 721 722 0=1.000000e-01
|
||||||
|
Convolution Conv_550 1 1 722 723 0=512 1=1 11=1 2=1 12=1 3=1 13=1 4=0 14=0 15=0 16=0 5=1 6=262144
|
||||||
|
HardSwish Div_558 1 1 723 731 0=1.666667e-01 1=5.000000e-01
|
||||||
|
Convolution Conv_559 1 1 629_splitncnn_0 732 0=255 1=1 11=1 2=1 12=1 3=1 13=1 4=0 14=0 15=0 16=0 5=1 6=32640
|
||||||
|
Reshape Reshape_573 1 1 732 750 0=-1 1=85 2=3
|
||||||
|
Permute Transpose_574 1 1 750 output 0=1
|
||||||
|
Convolution Conv_575 1 1 680_splitncnn_0 752 0=255 1=1 11=1 2=1 12=1 3=1 13=1 4=0 14=0 15=0 16=0 5=1 6=65280
|
||||||
|
Reshape Reshape_589 1 1 752 770 0=-1 1=85 2=3
|
||||||
|
Permute Transpose_590 1 1 770 771 0=1
|
||||||
|
Convolution Conv_591 1 1 731 772 0=255 1=1 11=1 2=1 12=1 3=1 13=1 4=0 14=0 15=0 16=0 5=1 6=130560
|
||||||
|
Reshape Reshape_605 1 1 772 790 0=-1 1=85 2=3
|
||||||
|
Permute Transpose_606 1 1 790 791 0=1
|
Reference in New Issue
Block a user