Files
ieemoo-ai-searchv2/cirtorch/layers/functional.py
2022-11-22 15:32:06 +08:00

173 lines
5.0 KiB
Python
Executable File

import math
import pdb
import torch
import torch.nn.functional as F
# --------------------------------------
# pooling
# --------------------------------------
def mac(x):
return F.max_pool2d(x, (x.size(-2), x.size(-1)))
# return F.adaptive_max_pool2d(x, (1,1)) # alternative
def spoc(x):
return F.avg_pool2d(x, (x.size(-2), x.size(-1)))
# return F.adaptive_avg_pool2d(x, (1,1)) # alternative
def gem(x, p=3, eps=1e-6):
return F.avg_pool2d(x.clamp(min=eps).pow(p), (x.size(-2), x.size(-1))).pow(1./p)
# return F.lp_pool2d(F.threshold(x, eps, eps), p, (x.size(-2), x.size(-1))) # alternative
def rmac(x, L=3, eps=1e-6):
ovr = 0.4 # desired overlap of neighboring regions
steps = torch.Tensor([2, 3, 4, 5, 6, 7]) # possible regions for the long dimension
W = x.size(3)
H = x.size(2)
w = min(W, H)
w2 = math.floor(w/2.0 - 1)
b = (max(H, W)-w)/(steps-1)
(tmp, idx) = torch.min(torch.abs(((w**2 - w*b)/w**2)-ovr), 0) # steps(idx) regions for long dimension
# region overplus per dimension
Wd = 0;
Hd = 0;
if H < W:
Wd = idx.item() + 1
elif H > W:
Hd = idx.item() + 1
v = F.max_pool2d(x, (x.size(-2), x.size(-1)))
v = v / (torch.norm(v, p=2, dim=1, keepdim=True) + eps).expand_as(v)
for l in range(1, L+1):
wl = math.floor(2*w/(l+1))
wl2 = math.floor(wl/2 - 1)
if l+Wd == 1:
b = 0
else:
b = (W-wl)/(l+Wd-1)
cenW = torch.floor(wl2 + torch.Tensor(range(l-1+Wd+1))*b) - wl2 # center coordinates
if l+Hd == 1:
b = 0
else:
b = (H-wl)/(l+Hd-1)
cenH = torch.floor(wl2 + torch.Tensor(range(l-1+Hd+1))*b) - wl2 # center coordinates
for i_ in cenH.tolist():
for j_ in cenW.tolist():
if wl == 0:
continue
R = x[:,:,(int(i_)+torch.Tensor(range(wl)).long()).tolist(),:]
R = R[:,:,:,(int(j_)+torch.Tensor(range(wl)).long()).tolist()]
vt = F.max_pool2d(R, (R.size(-2), R.size(-1)))
vt = vt / (torch.norm(vt, p=2, dim=1, keepdim=True) + eps).expand_as(vt)
v += vt
return v
def roipool(x, rpool, L=3, eps=1e-6):
ovr = 0.4 # desired overlap of neighboring regions
steps = torch.Tensor([2, 3, 4, 5, 6, 7]) # possible regions for the long dimension
W = x.size(3)
H = x.size(2)
w = min(W, H)
w2 = math.floor(w/2.0 - 1)
b = (max(H, W)-w)/(steps-1)
_, idx = torch.min(torch.abs(((w**2 - w*b)/w**2)-ovr), 0) # steps(idx) regions for long dimension
# region overplus per dimension
Wd = 0;
Hd = 0;
if H < W:
Wd = idx.item() + 1
elif H > W:
Hd = idx.item() + 1
vecs = []
vecs.append(rpool(x).unsqueeze(1))
for l in range(1, L+1):
wl = math.floor(2*w/(l+1))
wl2 = math.floor(wl/2 - 1)
if l+Wd == 1:
b = 0
else:
b = (W-wl)/(l+Wd-1)
cenW = torch.floor(wl2 + torch.Tensor(range(l-1+Wd+1))*b).int() - wl2 # center coordinates
if l+Hd == 1:
b = 0
else:
b = (H-wl)/(l+Hd-1)
cenH = torch.floor(wl2 + torch.Tensor(range(l-1+Hd+1))*b).int() - wl2 # center coordinates
for i_ in cenH.tolist():
for j_ in cenW.tolist():
if wl == 0:
continue
vecs.append(rpool(x.narrow(2,i_,wl).narrow(3,j_,wl)).unsqueeze(1))
return torch.cat(vecs, dim=1)
# --------------------------------------
# normalization
# --------------------------------------
def l2n(x, eps=1e-6):
return x / (torch.norm(x, p=2, dim=1, keepdim=True) + eps).expand_as(x)
def powerlaw(x, eps=1e-6):
x = x + self.eps
return x.abs().sqrt().mul(x.sign())
# --------------------------------------
# loss
# --------------------------------------
def contrastive_loss(x, label, margin=0.7, eps=1e-6):
# x is D x N
dim = x.size(0) # D
nq = torch.sum(label.data==-1) # number of tuples
S = x.size(1) // nq # number of images per tuple including query: 1+1+n
x1 = x[:, ::S].permute(1,0).repeat(1,S-1).view((S-1)*nq,dim).permute(1,0)
idx = [i for i in range(len(label)) if label.data[i] != -1]
x2 = x[:, idx]
lbl = label[label!=-1]
dif = x1 - x2
D = torch.pow(dif+eps, 2).sum(dim=0).sqrt()
y = 0.5*lbl*torch.pow(D,2) + 0.5*(1-lbl)*torch.pow(torch.clamp(margin-D, min=0),2)
y = torch.sum(y)
return y
def triplet_loss(x, label, margin=0.1):
# x is D x N
dim = x.size(0) # D
nq = torch.sum(label.data==-1).item() # number of tuples
S = x.size(1) // nq # number of images per tuple including query: 1+1+n
xa = x[:, label.data==-1].permute(1,0).repeat(1,S-2).view((S-2)*nq,dim).permute(1,0)
xp = x[:, label.data==1].permute(1,0).repeat(1,S-2).view((S-2)*nq,dim).permute(1,0)
xn = x[:, label.data==0]
dist_pos = torch.sum(torch.pow(xa - xp, 2), dim=0)
dist_neg = torch.sum(torch.pow(xa - xn, 2), dim=0)
return torch.sum(torch.clamp(dist_pos - dist_neg + margin, min=0))