import os from PIL import Image import torch def cid2filename(cid, prefix): """ Creates a training image path out of its CID name Arguments --------- cid : name of the image prefix : root directory where images are saved Returns ------- filename : full image filename """ return os.path.join(prefix, cid[-2:], cid[-4:-2], cid[-6:-4], cid) def pil_loader(path): # open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835) with open(path, 'rb') as f: img = Image.open(f) return img.convert('RGB') def accimage_loader(path): import accimage try: return accimage.Image(path) except IOError: # Potentially a decoding problem, fall back to PIL.Image return pil_loader(path) def default_loader(path): from torchvision import get_image_backend if get_image_backend() == 'accimage': return accimage_loader(path) else: return pil_loader(path) def imresize(img, imsize): img.thumbnail((imsize, imsize), Image.ANTIALIAS) return img def flip(x, dim): xsize = x.size() dim = x.dim() + dim if dim < 0 else dim x = x.view(-1, *xsize[dim:]) x = x.view(x.size(0), x.size(1), -1)[:, getattr(torch.arange(x.size(1)-1, -1, -1), ('cpu','cuda')[x.is_cuda])().long(), :] return x.view(xsize) def collate_tuples(batch): if len(batch) == 1: return [batch[0][0]], [batch[0][1]] return [batch[i][0] for i in range(len(batch))], [batch[i][1] for i in range(len(batch))]