# Ultralytics YOLO 🚀, AGPL-3.0 license import numpy as np import math import torch import scipy from scipy.spatial.distance import cdist # from ultralytics.utils.metrics import bbox_ioa try: import lap # for linear_assignment assert lap.__version__ # verify package is not directory except (ImportError, AssertionError, AttributeError): from ultralytics.utils.checks import check_requirements check_requirements('lapx>=0.5.2') # update to lap package from https://github.com/rathaROG/lapx import lap def bbox_iou(box1, box2, GIoU=False, DIoU=False, CIoU=False, eps=1e-7): '''由根目录下 utils.metrics.metrics.bbox_iou 更改而来''' # Returns Intersection over Union (IoU) of box1(1,4) to box2(n,4) # Get the coordinates of bounding boxes # x1, y1, x2, y2 = box1 # box1 = torch.tensor(box1) # box2 = torch.tensor(box2) b1_x1, b1_y1, b1_x2, b1_y2 = box1.T b2_x1, b2_y1, b2_x2, b2_y2 = box2.T w1, h1 = b1_x2 - b1_x1, (b1_y2 - b1_y1).clip(eps) w2, h2 = b2_x2 - b2_x1, (b2_y2 - b2_y1).clip(eps) # Intersection area # inter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp(0) * \ # (b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1)).clamp(0) inter = (np.minimum(b1_x2[:, None], b2_x2) - np.maximum(b1_x1[:, None], b2_x1)).clip(0) * \ (np.minimum(b1_y2[:, None], b2_y2) - np.maximum(b1_y1[:, None], b2_y1)).clip(0) # Union Area box1_area = w1 * h1 box2_area = w2 * h2 union = box1_area[:, None] + box2_area - inter + eps # IoU iou = inter / union if CIoU or DIoU or GIoU: cw = np.maximum(b1_x2[:, None], b2_x2) - np.minimum(b1_x1[:, None], b2_x1) # convex (smallest enclosing box) width ch = np.maximum(b1_y2[:, None], b2_y2) - np.minimum(b1_y1[:, None], b2_y1) # convex height if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1 c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared '''center dist ** 2''' rho2 = ((b1_x1[:, None] + b1_x2[:, None] - b2_x1 - b2_x2) ** 2 + \ (b1_y1[:, None] + b1_y2[:, None] - b2_y1 - b2_y2) ** 2) / 4 if CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47 v = (4 / math.pi ** 2) * (np.arctan(w1 / h1)[:, None] - np.arctan(w2 / h2))**2 with torch.no_grad(): alpha = v / (v - iou + (1 + eps)) return iou - (rho2 / c2 + v * alpha) # CIoU return iou - rho2 / c2 # DIoU c_area = cw * ch + eps # convex area return iou - (c_area - union) / c_area # GIoU https://arxiv.org/pdf/1902.09630.pdf return iou # IoU def bbox_ioa(box1, box2, iou=False, eps=1e-7): """ Calculate the intersection over box2 area given box1 and box2. Boxes are in x1y1x2y2 format. Args: box1 (np.array): A numpy array of shape (n, 4) representing n bounding boxes. box2 (np.array): A numpy array of shape (m, 4) representing m bounding boxes. iou (bool): Calculate the standard iou if True else return inter_area/box2_area. eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7. Returns: (np.array): A numpy array of shape (n, m) representing the intersection over box2 area. """ # Get the coordinates of bounding boxes b1_x1, b1_y1, b1_x2, b1_y2 = box1.T b2_x1, b2_y1, b2_x2, b2_y2 = box2.T # Intersection area inter_area = (np.minimum(b1_x2[:, None], b2_x2) - np.maximum(b1_x1[:, None], b2_x1)).clip(0) * \ (np.minimum(b1_y2[:, None], b2_y2) - np.maximum(b1_y1[:, None], b2_y1)).clip(0) # box2 area area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) if iou: box1_area = (b1_x2 - b1_x1) * (b1_y2 - b1_y1) area = area + box1_area[:, None] - inter_area # Intersection over box2 area return inter_area / (area + eps) # def linear_assignment(cost_matrix, thresh, use_lap=True): def linear_assignment(cost_matrix: np.ndarray, thresh: float, use_lap: bool = True) -> tuple: """ Perform linear assignment using scipy or lap.lapjv. Args: cost_matrix (np.ndarray): The matrix containing cost values for assignments. thresh (float): Threshold for considering an assignment valid. use_lap (bool, optional): Whether to use lap.lapjv. Defaults to True. Returns: (tuple): Tuple containing matched indices, unmatched indices from 'a', and unmatched indices from 'b'. """ if cost_matrix.size == 0: return np.empty((0, 2), dtype=int), tuple(range(cost_matrix.shape[0])), tuple(range(cost_matrix.shape[1])) if use_lap: # https://github.com/gatagat/lap _, x, y = lap.lapjv(cost_matrix, extend_cost=True, cost_limit=thresh) matches = [[ix, mx] for ix, mx in enumerate(x) if mx >= 0] unmatched_a = np.where(x < 0)[0] unmatched_b = np.where(y < 0)[0] else: # https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear_sum_assignment.html x, y = scipy.optimize.linear_sum_assignment(cost_matrix) # row x, col y matches = np.asarray([[x[i], y[i]] for i in range(len(x)) if cost_matrix[x[i], y[i]] <= thresh]) if len(matches) == 0: unmatched_a = list(np.arange(cost_matrix.shape[0])) unmatched_b = list(np.arange(cost_matrix.shape[1])) else: unmatched_a = list(set(np.arange(cost_matrix.shape[0])) - set(matches[:, 0])) unmatched_b = list(set(np.arange(cost_matrix.shape[1])) - set(matches[:, 1])) return matches, unmatched_a, unmatched_b # def iou_distance(atracks, btracks): def iou_distance(atracks: list, btracks: list) -> np.ndarray: """ Compute cost based on Intersection over Union (IoU) between tracks. Args: atracks (list[STrack] | list[np.ndarray]): List of tracks 'a' or bounding boxes. btracks (list[STrack] | list[np.ndarray]): List of tracks 'b' or bounding boxes. Returns: (np.ndarray): Cost matrix computed based on IoU. """ if (len(atracks) > 0 and isinstance(atracks[0], np.ndarray)) \ or (len(btracks) > 0 and isinstance(btracks[0], np.ndarray)): atlbrs = atracks btlbrs = btracks else: atlbrs = [track.tlbr for track in atracks] btlbrs = [track.tlbr for track in btracks] ious = np.zeros((len(atlbrs), len(btlbrs)), dtype=np.float32) if len(atlbrs) and len(btlbrs): box1 = np.ascontiguousarray(atlbrs, dtype=np.float32) box2 = np.ascontiguousarray(btlbrs, dtype=np.float32) ious = bbox_ioa(box1, box2, iou=True) ious_g = bbox_iou(box1, box2, GIoU=True).clip(-1.0, 1.0) ious_d = bbox_iou(box1, box2, DIoU=True).clip(-1.0, 1.0) ious_c = bbox_iou(box1, box2, CIoU=True).clip(-1.0, 1.0) return 1 - ious # cost matrix def embedding_distance(tracks, detections, metric='cosine'): """ Compute distance between tracks and detections based on embeddings. Args: tracks (list[STrack]): List of tracks. detections (list[BaseTrack]): List of detections. metric (str, optional): Metric for distance computation. Defaults to 'cosine'. Returns: (np.ndarray): Cost matrix computed based on embeddings. """ cost_matrix = np.zeros((len(tracks), len(detections)), dtype=np.float32) if cost_matrix.size == 0: return cost_matrix det_features = np.asarray([track.curr_feat for track in detections], dtype=np.float32) # for i, track in enumerate(tracks): # cost_matrix[i, :] = np.maximum(0.0, cdist(track.smooth_feat.reshape(1,-1), det_features, metric)) track_features = np.asarray([track.smooth_feat for track in tracks], dtype=np.float32) cost_matrix = np.maximum(0.0, cdist(track_features, det_features, metric)) # Normalized features return cost_matrix def fuse_score(cost_matrix, detections): """ Fuses cost matrix with detection scores to produce a single similarity matrix. Args: cost_matrix (np.ndarray): The matrix containing cost values for assignments. detections (list[BaseTrack]): List of detections with scores. Returns: (np.ndarray): Fused similarity matrix. """ if cost_matrix.size == 0: return cost_matrix iou_sim = 1 - cost_matrix det_scores = np.array([det.score for det in detections]) det_scores = np.expand_dims(det_scores, axis=0).repeat(cost_matrix.shape[0], axis=0) fuse_sim = iou_sim * det_scores return 1 - fuse_sim # fuse_cost