import torch.nn as nn import torchvision from torch.nn import init class Flatten(nn.Module): def forward(self, x): return x.view(x.shape[0], -1) class ChannelAttention(nn.Module): def __int__(self,channel,reduction, num_layers): super(ChannelAttention,self).__init__() self.avgpool = nn.AdaptiveAvgPool2d(1) gate_channels = [channel] gate_channels += [len(channel)//reduction]*num_layers gate_channels += [channel] self.ca = nn.Sequential() self.ca.add_module('flatten', Flatten()) for i in range(len(gate_channels)-2): self.ca.add_module('',nn.Linear(gate_channels[i], gate_channels[i+1])) self.ca.add_module('',nn.BatchNorm1d(gate_channels[i+1])) self.ca.add_module('',nn.ReLU()) self.ca.add_module('',nn.Linear(gate_channels[-2], gate_channels[-1])) def forward(self, x): res = self.avgpool(x) res = self.ca(res) res = res.unsqueeze(-1).unsqueeze(-1).expand_as(x) return res class SpatialAttention(nn.Module): def __int__(self, channel,reduction=16,num_lay=3,dilation=2): super(SpatialAttention).__init__() self.sa = nn.Sequential() self.sa.add_module('', nn.Conv2d(kernel_size=1, in_channels=channel, out_channels=(channel//reduction)*3)) self.sa.add_module('',nn.BatchNorm2d(num_features=(channel//reduction))) self.sa.add_module('',nn.ReLU()) for i in range(num_lay): self.sa.add_module('', nn.Conv2d(kernel_size=3, in_channels=(channel//reduction), out_channels=(channel//reduction), padding=1, dilation= 2)) self.sa.add_module('',nn.BatchNorm2d(channel//reduction)) self.sa.add_module('',nn.ReLU()) self.sa.add_module('',nn.Conv2d(channel//reduction, 1, kernel_size=1)) def forward(self,x): res = self.sa(x) res = res.expand_as(x) return res class BAMblock(nn.Module): def __init__(self,channel=512, reduction=16, dia_val=2): super(BAMblock, self).__init__() self.ca = ChannelAttention(channel, reduction) self.sa = SpatialAttention(channel,reduction,dia_val) self.sigmoid = nn.Sigmoid() def init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal(m.weight, mode='fan_out') if m.bais is not None: init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): init.constant_(m.weight, 1) init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): init.normal_(m.weight, std=0.001) if m.bias is not None: init.constant_(m.bias, 0) def forward(self,x): b, c, _, _ = x.size() sa_out=self.sa(x) ca_out=self.ca(x) weight=self.sigmoid(sa_out+ca_out) out=(1+weight)*x return out if __name__ =="__main__": print(512//14)