# -*- coding: utf-8 -*- """ Created on Mon Mar 4 18:38:20 2024 @author: ym """ import cv2 import copy import numpy as np from pathlib import Path curpath = Path(__file__).resolve().parents[0] curpath = Path(curpath) parpath = curpath.parent # from tracking.utils.mergetrack import track_equal_track from .dotracks import doTracks from .track_front import frontTrack class doFrontTracks(doTracks): def __init__(self, bboxes, frameDictList): super().__init__(bboxes, frameDictList) # self.tracks = [frontTrack(b) for b in self.lboxes] self.tracks = [frontTrack(b, f) for b, f in zip(self.lboxes, self.lfeats)] self.incart = self.getincart() def getincart(self): img = cv2.imread(str(parpath/'shopcart/cart_tempt/incart_ftmp.png'), cv2.IMREAD_GRAYSCALE) ret, binary = cv2.threshold(img, 250, 255, cv2.THRESH_BINARY) return binary def classify(self): '''功能:对 tracks 中元素分类 ''' tracks = self.tracks '''提取手的 tracks''' hand_tracks = [t for t in tracks if t.cls==0] self.Hands.extend(hand_tracks) tracks = self.sub_tracks(tracks, hand_tracks) '''提取小孩的 tracks''' kid_tracks = [t for t in tracks if t.cls==9] tracks = self.sub_tracks(tracks, kid_tracks) out_trcak = [t for t in tracks if t.isWholeOutCart] tracks = self.sub_tracks(tracks, out_trcak) '''静态 tracks''' static_tracks = [t for t in tracks if t.frnum>1 and t.is_static()] '''剔除静止目标后的 tracks''' tracks = self.sub_tracks(tracks, static_tracks) tracks_free = [t for t in tracks if t.frnum>1 and t.is_freemove()] self.FreeMove.extend(tracks_free) tracks = self.sub_tracks(tracks, tracks_free) # [self.associate_with_hand(htrack, gtrack) for htrack in hand_tracks for gtrack in tracks] '''轨迹循环归并''' merged_tracks = self.merge_tracks_loop(tracks) [self.associate_with_hand(htrack, gtrack) for htrack in hand_tracks for gtrack in merged_tracks] tracks = [t for t in merged_tracks if t.frnum > 1] # for gtrack in tracks: # # print(f"Goods ID:{gtrack.tid}") # for htrack in hand_tracks: # hand_ious = self.associate_with_hand(htrack, gtrack) # if len(hand_ious): # gtrack.Hands.append(htrack) # gtrack.HandsIou.append(hand_ious) '''静止 tracks 判断与剔除静止 tracks''' static_tracks = [t for t in tracks if t.frnum>1 and t.is_static()] tracks = self.sub_tracks(tracks, static_tracks) freemoved_tracks = [t for t in tracks if t.is_free_move()] tracks = self.sub_tracks(tracks, freemoved_tracks) self.Residual = tracks self.Confirmed = self.confirm_track() def confirm_track(self): Confirmed = None mindist = 0 for track in self.Residual: md = min(track.trajrects_wh) if md > mindist: mindist = copy.deepcopy(md) Confirmed = copy.deepcopy(track) if Confirmed is not None: return [Confirmed] return [] def associate_with_hand(self, htrack, gtrack): ''' 迁移至基类: 手部 Track、商品 Track 建立关联的依据: a. 运动帧的帧索引有交集 b. 帧索引交集部分iou均大于0 ''' assert htrack.cls==0 and gtrack.cls!=0 and gtrack.cls!=9, 'Track cls is Error!' hboxes = np.empty(shape=(0, 9), dtype = np.float) gboxes = np.empty(shape=(0, 9), dtype = np.float) # start, end 为索引值,需要 start:(end+1) for start, end in htrack.dynamic_y2: hboxes = np.concatenate((hboxes, htrack.boxes[start:end+1, :]), axis=0) for start, end in gtrack.dynamic_y1: gboxes = np.concatenate((gboxes, gtrack.boxes[start:end+1, :]), axis=0) hfids, gfids = hboxes[:, 7], gboxes[:, 7] fids = sorted(set(hfids).intersection(set(gfids))) if len(fids)==0: return None # print(f"Goods ID: {gtrack.tid}, Hand ID: {htrack.tid}") for f in fids: h = np.where(hfids==f)[0][0] g = np.where(gfids==f)[0][0] x11, y11, x12, y12 = hboxes[h, 0:4] x21, y21, x22, y22 = gboxes[g, 0:4] x1, y1 = max((x11, x21)), max((y11, y21)) x2, y2 = min((x12, x22)), min((y12, y22)) union = (x2 - x1).clip(0) * (y2 - y1).clip(0) area1 = (x12 - x11) * (y12 - y11) area2 = (x22 - x21) * (y22 - y21) iou = union / (area1 + area2 - union + 1e-6) if iou >= 0.01: gtrack.Hands.append((htrack.tid, f, iou)) return gtrack.Hands def merge_tracks(self, Residual): """ 对不同id,但可能是同一商品的目标进行归并 和 dotrack_back.py中函数相同,可以合并至基类 """ mergedTracks = self.base_merge_tracks(Residual) oldtracks, newtracks = [], [] for tracklist in mergedTracks: if len(tracklist) > 1: boxes = np.empty((0, 9), dtype=np.float32) feats = np.empty((0, 256), dtype=np.float32) for i, track in enumerate(tracklist): if i==0: ntid, ncls=track.boxes[0, 4], track.boxes[0, 6] iboxes = track.boxes.copy() ifeats = track.features.copy() # iboxes[:, 4], iboxes[:, 6] = ntid, ncls boxes = np.concatenate((boxes, iboxes), axis=0) feats = np.concatenate((feats, ifeats), axis=0) oldtracks.append(track) fid_indices = np.argsort(boxes[:, 7]) boxes_fid = boxes[fid_indices] feats_fid = feats[fid_indices] newtracks.append(frontTrack(boxes_fid, feats_fid)) elif len(tracklist) == 1: oldtracks.append(tracklist[0]) newtracks.append(tracklist[0]) redu = self.sub_tracks(Residual, oldtracks) merged = self.join_tracks(redu, newtracks) return merged