# -*- coding: utf-8 -*- """ Created on Tue Dec 10 14:30:16 2024 @author: ym """ import os import sys import numpy as np sys.path.append(r"D:\DetectTracking") from tracking.utils.read_data import read_tracking_output, read_similar #, extract_data, read_deletedBarcode_file IMG_FORMAT = ['.bmp', '.jpg', '.jpeg', '.png'] def creat_shopping_event(eventPath): '''构造放入商品事件字典,这些事件需满足条件: 1) 前后摄至少有一条轨迹输出 2) 保存有帧图像,以便裁剪出 boxe 子图 ''' '''evtName 为一次购物事件''' evtName = os.path.basename(eventPath) evtList = evtName.split('_') '''================ 0. 检查 evtName 及 eventPath 正确性和有效性 ================''' if evtName.find('2024')<0 and len(evtList[0])!=15: return if not os.path.isdir(eventPath): return if len(evtList)==1 or (len(evtList)==2 and len(evtList[1])==0): barcode = '' else: barcode = evtList[-1] if len(evtList)==3 and evtList[-1]== evtList[-2]: evtType = 'input' else: evtType = 'other' '''================ 1. 构造事件描述字典,暂定 9 items ===============''' event = {} event['barcode'] = barcode event['type'] = evtType event['filepath'] = eventPath event['back_imgpaths'] = [] event['front_imgpaths'] = [] event['back_boxes'] = np.empty((0, 9), dtype=np.float64) event['front_boxes'] = np.empty((0, 9), dtype=np.float64) event['back_feats'] = np.empty((0, 256), dtype=np.float64) event['front_feats'] = np.empty((0, 256), dtype=np.float64) event['feats_compose'] = np.empty((0, 256), dtype=np.float64) event['one2one'] = None event['one2n'] = None event['feats_select'] = np.empty((0, 256), dtype=np.float64) '''================= 2. 读取 data 文件 =============================''' for dataname in os.listdir(eventPath): # filename = '1_track.data' datapath = os.path.join(eventPath, dataname) if not os.path.isfile(datapath): continue CamerType = dataname.split('_')[0] ''' 2.1 读取 0/1_track.data 中数据,暂不考虑''' # if dataname.find("_track.data")>0: # bboxes, ffeats, trackerboxes, tracker_feat_dict, trackingboxes, tracking_feat_dict = extract_data(datapath) ''' 2.2 读取 0/1_tracking_output.data 中数据''' if dataname.find("_tracking_output.data")>0: tracking_output_boxes, tracking_output_feats = read_tracking_output(datapath) if len(tracking_output_boxes) != len(tracking_output_feats): continue if CamerType == '0': event['back_boxes'] = tracking_output_boxes event['back_feats'] = tracking_output_feats elif CamerType == '1': event['front_boxes'] = tracking_output_boxes event['front_feats'] = tracking_output_feats if dataname.find("process.data")==0: simiDict = read_similar(datapath) event['one2one'] = simiDict['one2one'] event['one2n'] = simiDict['one2n'] if len(event['back_boxes'])==0 or len(event['front_boxes'])==0: return None '''2.3 事件的特征表征方式: 特征选择、特征集成''' bk_feats = event['back_feats'] ft_feats = event['front_feats'] '''2.3.1 特征集成''' feats_compose = np.empty((0, 256), dtype=np.float64) if len(ft_feats): feats_compose = np.concatenate((feats_compose, ft_feats), axis=0) if len(bk_feats): feats_compose = np.concatenate((feats_compose, bk_feats), axis=0) event['feats_compose'] = feats_compose '''2.3.1 特征选择''' if len(ft_feats): event['feats_select'] = ft_feats '''================ 3. 读取图像文件地址,并按照帧ID排序 =============''' frontImgs, frontFid = [], [] backImgs, backFid = [], [] for imgname in os.listdir(eventPath): name, ext = os.path.splitext(imgname) if ext not in IMG_FORMAT or name.find('frameId')<0: continue CamerType = name.split('_')[0] frameId = int(name.split('_')[3]) imgpath = os.path.join(eventPath, imgname) if CamerType == '0': backImgs.append(imgpath) backFid.append(frameId) if CamerType == '1': frontImgs.append(imgpath) frontFid.append(frameId) frontIdx = np.argsort(np.array(frontFid)) backIdx = np.argsort(np.array(backFid)) '''3.1 生成依据帧 ID 排序的前后摄图像地址列表''' frontImgs = [frontImgs[i] for i in frontIdx] backImgs = [backImgs[i] for i in backIdx] '''3.2 将前、后摄图像路径添加至事件字典''' bfid = event['back_boxes'][:, 7].astype(np.int64) ffid = event['front_boxes'][:, 7].astype(np.int64) if len(bfid) and max(bfid) <= len(backImgs): event['back_imgpaths'] = [backImgs[i-1] for i in bfid] if len(ffid) and max(ffid) <= len(frontImgs): event['front_imgpaths'] = [frontImgs[i-1] for i in ffid] '''================ 4. 判断当前事件有效性,并添加至事件列表 ==========''' condt1 = len(event['back_imgpaths'])==0 or len(event['front_imgpaths'])==0 condt2 = len(event['front_feats'])==0 and len(event['back_feats'])==0 if condt1 or condt2: print(f"Event: {evtName}, Error, condt1: {condt1}, condt2: {condt2}") return None return event