更新 detacttracking
This commit is contained in:
63
detecttracking/ultralytics/utils/callbacks/wb.py
Normal file
63
detecttracking/ultralytics/utils/callbacks/wb.py
Normal file
@ -0,0 +1,63 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
from ultralytics.utils import SETTINGS, TESTS_RUNNING
|
||||
from ultralytics.utils.torch_utils import model_info_for_loggers
|
||||
|
||||
try:
|
||||
assert not TESTS_RUNNING # do not log pytest
|
||||
assert SETTINGS['wandb'] is True # verify integration is enabled
|
||||
import wandb as wb
|
||||
|
||||
assert hasattr(wb, '__version__')
|
||||
|
||||
_processed_plots = {}
|
||||
|
||||
except (ImportError, AssertionError):
|
||||
wb = None
|
||||
|
||||
|
||||
def _log_plots(plots, step):
|
||||
for name, params in plots.items():
|
||||
timestamp = params['timestamp']
|
||||
if _processed_plots.get(name) != timestamp:
|
||||
wb.run.log({name.stem: wb.Image(str(name))}, step=step)
|
||||
_processed_plots[name] = timestamp
|
||||
|
||||
|
||||
def on_pretrain_routine_start(trainer):
|
||||
"""Initiate and start project if module is present."""
|
||||
wb.run or wb.init(project=trainer.args.project or 'YOLOv8', name=trainer.args.name, config=vars(trainer.args))
|
||||
|
||||
|
||||
def on_fit_epoch_end(trainer):
|
||||
"""Logs training metrics and model information at the end of an epoch."""
|
||||
wb.run.log(trainer.metrics, step=trainer.epoch + 1)
|
||||
_log_plots(trainer.plots, step=trainer.epoch + 1)
|
||||
_log_plots(trainer.validator.plots, step=trainer.epoch + 1)
|
||||
if trainer.epoch == 0:
|
||||
wb.run.log(model_info_for_loggers(trainer), step=trainer.epoch + 1)
|
||||
|
||||
|
||||
def on_train_epoch_end(trainer):
|
||||
"""Log metrics and save images at the end of each training epoch."""
|
||||
wb.run.log(trainer.label_loss_items(trainer.tloss, prefix='train'), step=trainer.epoch + 1)
|
||||
wb.run.log(trainer.lr, step=trainer.epoch + 1)
|
||||
if trainer.epoch == 1:
|
||||
_log_plots(trainer.plots, step=trainer.epoch + 1)
|
||||
|
||||
|
||||
def on_train_end(trainer):
|
||||
"""Save the best model as an artifact at end of training."""
|
||||
_log_plots(trainer.validator.plots, step=trainer.epoch + 1)
|
||||
_log_plots(trainer.plots, step=trainer.epoch + 1)
|
||||
art = wb.Artifact(type='model', name=f'run_{wb.run.id}_model')
|
||||
if trainer.best.exists():
|
||||
art.add_file(trainer.best)
|
||||
wb.run.log_artifact(art, aliases=['best'])
|
||||
|
||||
|
||||
callbacks = {
|
||||
'on_pretrain_routine_start': on_pretrain_routine_start,
|
||||
'on_train_epoch_end': on_train_epoch_end,
|
||||
'on_fit_epoch_end': on_fit_epoch_end,
|
||||
'on_train_end': on_train_end} if wb else {}
|
Reference in New Issue
Block a user