更新 detacttracking
This commit is contained in:
52
detecttracking/ultralytics/models/yolo/pose/predict.py
Normal file
52
detecttracking/ultralytics/models/yolo/pose/predict.py
Normal file
@ -0,0 +1,52 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
from ultralytics.engine.results import Results
|
||||
from ultralytics.models.yolo.detect.predict import DetectionPredictor
|
||||
from ultralytics.utils import DEFAULT_CFG, LOGGER, ops
|
||||
|
||||
|
||||
class PosePredictor(DetectionPredictor):
|
||||
"""
|
||||
A class extending the DetectionPredictor class for prediction based on a pose model.
|
||||
|
||||
Example:
|
||||
```python
|
||||
from ultralytics.utils import ASSETS
|
||||
from ultralytics.models.yolo.pose import PosePredictor
|
||||
|
||||
args = dict(model='yolov8n-pose.pt', source=ASSETS)
|
||||
predictor = PosePredictor(overrides=args)
|
||||
predictor.predict_cli()
|
||||
```
|
||||
"""
|
||||
|
||||
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
|
||||
super().__init__(cfg, overrides, _callbacks)
|
||||
self.args.task = 'pose'
|
||||
if isinstance(self.args.device, str) and self.args.device.lower() == 'mps':
|
||||
LOGGER.warning("WARNING ⚠️ Apple MPS known Pose bug. Recommend 'device=cpu' for Pose models. "
|
||||
'See https://github.com/ultralytics/ultralytics/issues/4031.')
|
||||
|
||||
def postprocess(self, preds, img, orig_imgs):
|
||||
"""Return detection results for a given input image or list of images."""
|
||||
preds = ops.non_max_suppression(preds,
|
||||
self.args.conf,
|
||||
self.args.iou,
|
||||
agnostic=self.args.agnostic_nms,
|
||||
max_det=self.args.max_det,
|
||||
classes=self.args.classes,
|
||||
nc=len(self.model.names))
|
||||
|
||||
if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list
|
||||
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
|
||||
|
||||
results = []
|
||||
for i, pred in enumerate(preds):
|
||||
orig_img = orig_imgs[i]
|
||||
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape).round()
|
||||
pred_kpts = pred[:, 6:].view(len(pred), *self.model.kpt_shape) if len(pred) else pred[:, 6:]
|
||||
pred_kpts = ops.scale_coords(img.shape[2:], pred_kpts, orig_img.shape)
|
||||
img_path = self.batch[0][i]
|
||||
results.append(
|
||||
Results(orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6], keypoints=pred_kpts))
|
||||
return results
|
Reference in New Issue
Block a user