更新 detacttracking
This commit is contained in:
49
detecttracking/ultralytics/models/sam/modules/sam.py
Normal file
49
detecttracking/ultralytics/models/sam/modules/sam.py
Normal file
@ -0,0 +1,49 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
from typing import List
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from .decoders import MaskDecoder
|
||||
from .encoders import ImageEncoderViT, PromptEncoder
|
||||
|
||||
|
||||
class Sam(nn.Module):
|
||||
mask_threshold: float = 0.0
|
||||
image_format: str = 'RGB'
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
image_encoder: ImageEncoderViT,
|
||||
prompt_encoder: PromptEncoder,
|
||||
mask_decoder: MaskDecoder,
|
||||
pixel_mean: List[float] = (123.675, 116.28, 103.53),
|
||||
pixel_std: List[float] = (58.395, 57.12, 57.375)
|
||||
) -> None:
|
||||
"""
|
||||
SAM predicts object masks from an image and input prompts.
|
||||
|
||||
Note:
|
||||
All forward() operations moved to SAMPredictor.
|
||||
|
||||
Args:
|
||||
image_encoder (ImageEncoderViT): The backbone used to encode the image into image embeddings that allow for
|
||||
efficient mask prediction.
|
||||
prompt_encoder (PromptEncoder): Encodes various types of input prompts.
|
||||
mask_decoder (MaskDecoder): Predicts masks from the image embeddings and encoded prompts.
|
||||
pixel_mean (list(float)): Mean values for normalizing pixels in the input image.
|
||||
pixel_std (list(float)): Std values for normalizing pixels in the input image.
|
||||
"""
|
||||
super().__init__()
|
||||
self.image_encoder = image_encoder
|
||||
self.prompt_encoder = prompt_encoder
|
||||
self.mask_decoder = mask_decoder
|
||||
self.register_buffer('pixel_mean', torch.Tensor(pixel_mean).view(-1, 1, 1), False)
|
||||
self.register_buffer('pixel_std', torch.Tensor(pixel_std).view(-1, 1, 1), False)
|
Reference in New Issue
Block a user