更新 detacttracking

This commit is contained in:
lee
2025-01-22 13:16:44 +08:00
parent 2320468c40
commit c9d79f8059
355 changed files with 61097 additions and 1 deletions

View File

@ -0,0 +1,720 @@
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
"""
Run YOLOv5 detection inference on images, videos, directories, globs, YouTube, webcam, streams, etc.
Usage - sources:
$ python detect.py --weights yolov5s.pt --source 0 # webcam
img.jpg # image
vid.mp4 # video
screen # screenshot
path/ # directory
list.txt # list of images
list.streams # list of streams
'path/*.jpg' # glob
'https://youtu.be/Zgi9g1ksQHc' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
Usage - formats:
$ python detect.py --weights yolov5s.pt # PyTorch
yolov5s.torchscript # TorchScript
yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
yolov5s_openvino_model # OpenVINO
yolov5s.engine # TensorRT
yolov5s.mlmodel # CoreML (macOS-only)
yolov5s_saved_model # TensorFlow SavedModel
yolov5s.pb # TensorFlow GraphDef
yolov5s.tflite # TensorFlow Lite
yolov5s_edgetpu.tflite # TensorFlow Edge TPU
yolov5s_paddle_model # PaddlePaddle
"""
import argparse
import csv
import os
import platform
import sys
from pathlib import Path
import glob
import numpy as np
import pickle
import torch
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
from models.common import DetectMultiBackend
from detecttracking.utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
from detecttracking.utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2,
increment_path, non_max_suppression, print_args, scale_boxes, strip_optimizer, xyxy2xywh)
from detecttracking.utils.torch_utils import select_device, smart_inference_mode
'''集成跟踪模块,输出跟踪结果文件 .npy'''
# from ultralytics.engine.results import Boxes # Results
# from ultralytics.utils import IterableSimpleNamespace, yaml_load
from tracking.utils.plotting import Annotator, colors
from tracking.utils import Boxes, IterableSimpleNamespace, yaml_load, boxes_add_fid
from tracking.trackers import BOTSORT, BYTETracker
from tracking.utils.showtrack import drawtracks
from hands.hand_inference import hand_pose
# from contrast.feat_extract.config import config as conf
from contrast.feat_extract.inference import FeatsInterface
# ReIDEncoder = FeatsInterface(conf)
IMG_FORMATS = '.bmp', '.dng', '.jpeg', '.jpg', '.mpo', '.png', '.tif', '.tiff', '.webp', '.pfm' # include image suffixes
VID_FORMATS = '.asf', '.avi', '.gif', '.m4v', '.mkv', '.mov', '.mp4', '.mpeg', '.mpg', '.ts', '.wmv' # include video suffixes
# from tracking.trackers.reid.reid_interface import ReIDInterface
# from tracking.trackers.reid.config import config as ReIDConfig
# ReIDEncoder = ReIDInterface(ReIDConfig)
# tracker_yaml = r"./tracking/trackers/cfg/botsort.yaml"
# def inference_image(image, detections):
# H, W, _ = np.shape(image)
# imgs = []
# batch_patches = []
# patches = []
# for d in range(np.size(detections, 0)):
# tlbr = detections[d, :4].astype(np.int_)
# tlbr[0] = max(0, tlbr[0])
# tlbr[1] = max(0, tlbr[1])
# tlbr[2] = min(W - 1, tlbr[2])
# tlbr[3] = min(H - 1, tlbr[3])
# img1 = image[tlbr[1]:tlbr[3], tlbr[0]:tlbr[2], :]
# img = img1[:, :, ::-1].copy() # the model expects RGB inputs
# patch = ReIDEncoder.transform(img)
# imgs.append(img1)
# # patch = patch.to(device=self.device).half()
# if str(ReIDEncoder.device) != "cpu":
# patch = patch.to(device=ReIDEncoder.device).half()
# else:
# patch = patch.to(device=ReIDEncoder.device)
# patches.append(patch)
# if (d + 1) % ReIDEncoder.batch_size == 0:
# patches = torch.stack(patches, dim=0)
# batch_patches.append(patches)
# patches = []
# if len(patches):
# patches = torch.stack(patches, dim=0)
# batch_patches.append(patches)
# features = np.zeros((0, ReIDEncoder.embedding_size))
# for patches in batch_patches:
# pred = ReIDEncoder.model(patches)
# pred[torch.isinf(pred)] = 1.0
# feat = pred.cpu().data.numpy()
# features = np.vstack((features, feat))
# return imgs, features
def init_trackers(tracker_yaml=None, bs=1, resnetModel=None):
"""
Initialize trackers for object tracking during prediction.
"""
# tracker_yaml = r"./tracking/trackers/cfg/botsort.yaml"
TRACKER_MAP = {'bytetrack': BYTETracker, 'botsort': BOTSORT}
cfg = IterableSimpleNamespace(**yaml_load(tracker_yaml))
trackers = []
for _ in range(bs):
tracker = TRACKER_MAP[cfg.tracker_type](args=cfg, frame_rate=30, resnetModel=resnetModel)
trackers.append(tracker)
return trackers
'''=============== used in pipeline.py =================='''
@smart_inference_mode()
def yolo_resnet_tracker(
weights=ROOT / 'yolov5s.pt', # model path or triton URL
source=ROOT / 'data/images', # file/dir/URL/glob/screen/0(webcam)
save_dir='',
is_save_img=True,
is_save_video=True,
is_annotate=True,
tracker_yaml="./detecttracking/tracking/trackers/cfg/botsort.yaml",
imgsz=(640, 640), # inference size (height, width)
conf_thres=0.25, # confidence threshold
iou_thres=0.45, # NMS IOU threshold
max_det=1000, # maximum detections per image
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
classes=None, # filter by class: --class 0, or --class 0 2 3
agnostic_nms=False, # class-agnostic NMS
augment=False, # augmented inference
line_thickness=3, # bounding box thickness (pixels)
hide_labels=False, # hide labels
hide_conf=False, # hide confidencesL
half=False, # use FP16 half-precision inference
dnn=False, # use OpenCV DNN for ONNX inference
vid_stride=1, # video frame-rate stride
data=ROOT / 'data/coco128.yaml', # dataset.yaml path
video_frames=None,
resnetModel=None,
yoloModel=None
):
# source = str(source)
# Load model
# device = select_device(device)
# model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
model = yoloModel
ReIDEncoder = FeatsInterface(resnetModel)
stride, names, pt = model.stride, model.names, model.pt
imgsz = check_img_size(imgsz, s=stride) # check image size
# Dataloader
bs = 1 # batch_size
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
vid_path, vid_writer = [None] * bs, [None] * bs
# Run inference
model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) # warmup
tracker = init_trackers(tracker_yaml, bs, resnetModel)[0]
dt = (Profile(), Profile(), Profile())
# trackerBoxes = np.empty((0, 9), dtype = np.float32)
yoloResnetTracker = []
for path, im, im0s, vid_cap, s in dataset:
with dt[0]:
im = torch.from_numpy(im).to(model.device)
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
im /= 255 # 0 - 255 to 0.0 - 1.0
if len(im.shape) == 3:
im = im[None] # expand for batch dim
# Inference
with dt[1]:
# visualize = increment_path(project / Path(path).stem, mkdir=True) if visualize else False
pred = model(im, augment=augment, visualize=False)
# NMS
with dt[2]:
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
if dataset.mode == "video":
frameId = dataset.frame
else:
frameId = dataset.count
# Process predictions
for i, det in enumerate(pred): # per image
im0 = im0s.copy()
annotator = Annotator(im0.copy(), line_width=line_thickness, example=str(names))
s += '%gx%g ' % im.shape[2:] # print string
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()
det = det.cpu().numpy()
## ================================================================ writed by WQG
'''tracks: [x1, y1, x2, y2, track_id, score, cls, frame_index, box_index]
0 1 2 3 4 5 6 7 8
这里frame_index 也可以用视频的 帧ID 代替, box_index 保持不变
'''
det_tracking = Boxes(det, im0.shape).cpu().numpy()
tracks = tracker.update(det_tracking, im0)
if len(tracks) > 0:
tracks[:, 7] = frameId
# trackerBoxes = np.concatenate([trackerBoxes, tracks], axis=0)
'''================== 1. 存储 dets/subimgs/features Dict ============='''
imgs, features = ReIDEncoder.inference(im0, tracks)
imgdict, featdict = {}, {}
for ii, bid in enumerate(tracks[:, 8]):
featdict.update(
{f"{int(frameId)}_{int(bid)}": features[ii, :]}) # [f"feat_{int(bid)}"] = features[i, :]
imgdict.update({f"{int(frameId)}_{int(bid)}": imgs[ii]})
frameDict = {"path": path,
"fid": int(frameId),
"bboxes": det,
"tboxes": tracks,
"imgs": imgdict,
"feats": featdict}
yoloResnetTracker.append(frameDict)
# imgs, features = inference_image(im0, tracks)
# TrackerFeats = np.concatenate([TrackerFeats, features], axis=0)
'''================== 2. 提取手势位置 ==================='''
for *xyxy, id, conf, cls, fid, bid in reversed(tracks):
name = ('' if id == -1 else f'id:{int(id)} ') + names[int(cls)]
label = None if hide_labels else (name if hide_conf else f'{name} {conf:.2f}')
if id >= 0 and cls == 0:
color = colors(int(cls), True)
elif id >= 0 and cls != 0:
color = colors(int(id), True)
else:
color = colors(19, True) # 19为调色板的最后一个元素
annotator.box_label(xyxy, label, color=color)
'''====== Save results (image and video) ======'''
# save_path = str(save_dir / Path(path).name) # 带有后缀名
if is_annotate:
im0 = annotator.result()
if is_save_img:
save_path_img = str(save_dir / Path(path).stem)
if dataset.mode == 'image':
imgpath = save_path_img + ".png"
else:
imgpath = save_path_img + f"_{frameId}.png"
cv2.imwrite(Path(imgpath), im0)
if video_frames is not None:
video_frames.update({frameId: im0})
# if dataset.mode == 'video' and is_save_video:
if is_save_video:
if dataset.mode == 'video':
vdieo_path = str(save_dir / Path(path).stem) + '.mp4' # 带有后缀名
else:
videoname = str(Path(path).stem).split('_')[0] + '.mp4'
vdieo_path = str(save_dir / videoname)
if vid_path[i] != vdieo_path: # new video
vid_path[i] = vdieo_path
if isinstance(vid_writer[i], cv2.VideoWriter):
vid_writer[i].release() # release previous video writer
if vid_cap: # video
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
else: # stream
fps, w, h = 25, im0.shape[1], im0.shape[0]
vdieo_path = str(Path(vdieo_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos
vid_writer[i] = cv2.VideoWriter(vdieo_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
vid_writer[i].write(im0)
# Print time (inference-only)
LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms")
return yoloResnetTracker
@smart_inference_mode()
def run(
weights=ROOT / 'yolov5s.pt', # model path or triton URL
source=ROOT / 'data/images', # file/dir/URL/glob/screen/0(webcam)
project=ROOT / 'runs/detect', # save results to project/name
name='exp', # save results to project/name
tracker_yaml="./tracking/trackers/cfg/botsort.yaml",
imgsz=(640, 640), # inference size (height, width)
conf_thres=0.25, # confidence threshold
iou_thres=0.45, # NMS IOU threshold
max_det=1000, # maximum detections per image
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
view_img=False, # show results
save_txt=False, # save results to *.txt
save_csv=False, # save results in CSV format
save_conf=False, # save confidences in --save-txt labels
save_crop=False, # save cropped prediction boxes
nosave=False, # do not save images/videos
classes=None, # filter by class: --class 0, or --class 0 2 3
agnostic_nms=False, # class-agnostic NMS
augment=False, # augmented inference
visualize=False, # visualize features
update=False, # update all models
exist_ok=False, # existing project/name ok, do not increment
line_thickness=3, # bounding box thickness (pixels)
hide_labels=False, # hide labels
hide_conf=False, # hide confidencesL
half=False, # use FP16 half-precision inference
dnn=False, # use OpenCV DNN for ONNX inference
vid_stride=1, # video frame-rate stride
data=ROOT / 'data/coco128.yaml', # dataset.yaml path
):
'''
source: 视频文件或图像列表
'''
source = str(source)
# filename = os.path.split(source)[-1]
save_img = not nosave and not source.endswith('.txt') # save inference images
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
webcam = source.isnumeric() or source.endswith('.streams') or (is_url and not is_file)
screenshot = source.lower().startswith('screen')
if is_url and is_file:
source = check_file(source) # download
# spth = source.split('\\')[-2] + "_" + Path(source).stem
save_dir = Path(project) / Path(source.split('\\')[-2] + "_" + str(Path(source).stem))
# save_dir = Path(project) / Path(source).stem
if save_dir.exists():
print(Path(source).stem)
# return
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
else:
save_dir.mkdir(parents=True, exist_ok=True)
# Load model
device = select_device(device)
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
stride, names, pt = model.stride, model.names, model.pt
imgsz = check_img_size(imgsz, s=stride) # check image size
# Dataloader
bs = 1 # batch_size
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
vid_path, vid_writer = [None] * bs, [None] * bs
# Run inference
model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) # warmup
seen, dt = 0, (Profile(), Profile(), Profile())
tracker = init_trackers(tracker_yaml, bs)[0]
handpose = hand_pose()
handlocals_dict = {}
boxes_and_imgs = []
BoxesFeats = []
track_boxes = np.empty((0, 9), dtype=np.float32)
det_boxes = np.empty((0, 9), dtype=np.float32)
DetBoxes = np.empty((0, 6), dtype=np.float32)
TrackerBoxes = np.empty((0, 9), dtype=np.float32)
TrackerFeats = np.empty((0, 256), dtype=np.float32)
features_dict = {}
TracksDict = {}
for path, im, im0s, vid_cap, s in dataset:
if save_img and 'imgshow' not in locals().keys():
imgshow = im0s.copy()
## ============================= tracking 功能只处理视频writed by WQG
# if dataset.mode == 'image':
# continue
with dt[0]:
im = torch.from_numpy(im).to(model.device)
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
im /= 255 # 0 - 255 to 0.0 - 1.0
if len(im.shape) == 3:
im = im[None] # expand for batch dim
# Inference
with dt[1]:
visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
pred = model(im, augment=augment, visualize=visualize)
# NMS
with dt[2]:
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
# Process predictions
for i, det in enumerate(pred): # per image
seen += 1
if webcam: # batch_size >= 1
p, im0, frame = path[i], im0s[i].copy(), dataset.count
s += f'{i}: '
else:
p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
s += '%gx%g ' % im.shape[2:] # print string
# im0_ant = im0.copy()
annotator = Annotator(im0.copy(), line_width=line_thickness, example=str(names))
nd = len(det)
if nd:
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()
# det = det.cpu().numpy()
## ============================================================ 前后帧相同 boxes 的特征赋值
# def static_estimate(box1, box2, TH1=8, TH2=12):
# dij_abs = max(np.abs(box1 - box2))
# dij_euc = max([np.linalg.norm((box1[:2] - box2[:2])),
# np.linalg.norm((box1[2:4] - box2[2:4]))
# ])
# if dij_abs < TH1 and dij_euc < TH2:
# return True
# else:
# return False
# nw = 3 # 向前递推检查的窗口大小
# nf = len(BoxesFeats) # 已经检测+特征提取的帧数
# feat_curr = [None] * nd # nd: 当前帧检测出的boxes数
# for ii in range(nd):
# box = det[ii, :4]
# kk=1
# feat = None
# while kk <= nw and nf>=kk:
# ki = -1 * kk
# boxes_ = BoxesFeats[ki][0]
# feats_ = BoxesFeats[ki][1]
# flag = [jj for jj in range(len(boxes_)) if static_estimate(box, boxes_[jj, :4])]
# if len(flag) == 1:
# feat = feats_[flag[0]]
# break
# kk += 1
# if feat is not None:
# feat_curr[ii] = feat
## ================================================================ writed by WQG
'''tracks: [x1, y1, x2, y2, track_id, score, cls, frame_index, box_index]
0 1 2 3 4 5 6 7 8
这里frame_index 也可以用视频的 帧ID 代替, box_index 保持不变
'''
det_tracking = Boxes(det, im0.shape).cpu().numpy()
tracks = tracker.update(det_tracking, im0)
if len(tracks) == 0:
continue
if dataset.mode == "video":
frameId = dataset.frame
else:
frameId = dataset.count
tracks[:, 7] = frameId
tracks[:, 7] = frameId
'''================== 1. 存储 dets/subimgs/features Dict ============='''
# imgs, features = inference_image(im0, tracks)
imgs, features = ReIDEncoder.inference(im0, tracks)
TrackerFeats = np.concatenate([TrackerFeats, features], axis=0)
imgdict = {}
boxdict = {}
featdict = {}
for ii, bid in enumerate(tracks[:, 8]):
imgdict.update({int(bid): imgs[ii]}) # [f"img_{int(bid)}"] = imgs[i]
boxdict.update({int(bid): tracks[ii, :]}) # [f"box_{int(bid)}"] = tracks[i, :]
featdict.update({int(bid): features[ii, :]}) # [f"feat_{int(bid)}"] = features[i, :]
TracksDict[f"frame_{int(frameId)}"] = {"imgs": imgdict, "boxes": boxdict, "feats": featdict}
track_boxes = np.concatenate([track_boxes, tracks], axis=0)
'''================== 2. 提取手势位置 ==================='''
# idx_0 = tracks[:, 6].astype(np.int_) == 0
# hn = 0
# for j, index in enumerate(idx_0):
# if index:
# track = tracks[j, :]
# hand_local, imgshow = handpose.get_hand_local(track, im0)
# handlocals_dict.update({int(track[7]): {int(track[8]): hand_local}})
# # '''yoloV5和手势检测的召回率并不一直用hand_local代替tracks中手部的(x1, y1, x2, y2),会使得两种坐标方式混淆'''
# # if hand_local: tracks[j, :4] = hand_local
# hn += 1
# cv2.imwrite(f"D:\DeepLearning\yolov5\hands\images\{Path(source).stem}_{int(track[7])}_{hn}.png", imgshow)
for *xyxy, id, conf, cls, fid, bid in reversed(tracks):
name = ('' if id == -1 else f'id:{int(id)} ') + names[int(cls)]
label = None if hide_labels else (name if hide_conf else f'{name} {conf:.2f}')
if id >= 0 and cls == 0:
color = colors(int(cls), True)
elif id >= 0 and cls != 0:
color = colors(int(id), True)
else:
color = colors(19, True) # 19为调色板的最后一个元素
annotator.box_label(xyxy, label, color=color)
# Save results (image and video with tracking)
im0 = annotator.result()
p = Path(p) # to Path
save_path = str(save_dir / p.name) # im.jpg
if save_img:
save_path_img, ext = os.path.splitext(save_path)
if dataset.mode == 'image':
imgpath = save_path_img + ".png"
else:
imgpath = save_path_img + f"_{frameId}.png"
cv2.imwrite(Path(imgpath), im0)
if dataset.mode == 'video':
if vid_path[i] != save_path: # new video
vid_path[i] = save_path
if isinstance(vid_writer[i], cv2.VideoWriter):
vid_writer[i].release() # release previous video writer
if vid_cap: # video
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
else: # stream
fps, w, h = 30, im0.shape[1], im0.shape[0]
save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos
vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
vid_writer[i].write(im0)
# Print time (inference-only)
LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms")
if track_boxes.size == 0:
return
## ======================================================================== written by WQG
## track_boxes: Array, [x1, y1, x2, y2, track_id, score, cls, frame_index, box_id]
TracksDict.update({"TrackBoxes": track_boxes})
'''上面保存了检测结果是视频和图像,以下还保存五种类型的数据'''
filename = os.path.split(save_path_img)[-1]
'''======================== 1. save in './run/detect/' ===================='''
if source.find("front") >= 0 or Path(source).stem.split('_')[0] == '1':
carttemp = cv2.imread("./tracking/shopcart/cart_tempt/board_ftmp_line.png")
else:
carttemp = cv2.imread("./tracking/shopcart/cart_tempt/edgeline.png")
imgshow = drawtracks(track_boxes, carttemp)
showpath_1 = save_path_img + "_show.png"
cv2.imwrite(Path(showpath_1), imgshow)
'''======================== 2. save dets/subimgs/features Dict =================='''
trackdicts_dir = Path('./tracking/data/trackdicts/')
if not trackdicts_dir.exists():
trackdicts_dir.mkdir(parents=True, exist_ok=True)
trackdicts_dir = trackdicts_dir.joinpath(f'{filename}.pkl')
with open(trackdicts_dir, 'wb') as file:
pickle.dump(TracksDict, file)
# np.save(f'{filename}.npy', DetBoxes)
'''======================== 3. save hand_local data =================='''
# handlocal_dir = Path('./tracking/data/handlocal/')
# if not handlocal_dir.exists():
# handlocal_dir.mkdir(parents=True, exist_ok=True)
# handlocal_path = handlocal_dir.joinpath(f'{filename}.pkl')
# with open(handlocal_path, 'wb') as file:
# pickle.dump(handlocals_dict, file)
# Print results
t = tuple(x.t / seen * 1E3 for x in dt) # speeds per image
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
if save_txt or save_img:
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
if update:
strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning)
def parse_opt():
modelpath = ROOT / 'ckpts/best_cls10_0906.pt' # 'ckpts/best_15000_0908.pt', 'ckpts/yolov5s.pt', 'ckpts/best_20000_cls30.pt, best_yolov5m_250000'
'''datapath为视频文件目录或视频文件'''
datapath = r"D:/datasets/ym/videos/标记视频/" # ROOT/'data/videos', ROOT/'data/images' images
# datapath = r"D:\datasets\ym\highvalue\videos"
# datapath = r"D:/dcheng/videos/"
# modelpath = ROOT / 'ckpts/yolov5s.pt'
parser = argparse.ArgumentParser()
parser.add_argument('--weights', nargs='+', type=str, default=modelpath,
help='model path or triton URL') # 'yolov5s.pt', best_15000_0908.pt
parser.add_argument('--source', type=str, default=datapath,
help='file/dir/URL/glob/screen/0(webcam)') # images, videos
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path')
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--view-img', action='store_true', help='show results')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--save-csv', action='store_true', help='save results in CSV format')
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--visualize', action='store_true', help='visualize features')
parser.add_argument('--update', action='store_true', help='update all models')
parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name')
parser.add_argument('--name', default='exp', help='save results to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
parser.add_argument('--vid-stride', type=int, default=1, help='video frame-rate stride')
opt = parser.parse_args()
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
print_args(vars(opt))
return opt
def find_video_imgs(root_dir):
all_files = []
extensions = ['.mp4']
for dirpath, dirnames, filenames in os.walk(root_dir):
for filename in filenames:
file, ext = os.path.splitext(filename)
if ext in IMG_FORMATS + VID_FORMATS:
all_files.append(os.path.join(dirpath, filename))
return all_files
def main():
'''
run(): 单张图像或单个视频文件的推理,不支持图像序列,
'''
check_requirements(ROOT / 'requirements.txt', exclude=('tensorboard', 'thop'))
opt = parse_opt()
optdict = vars(opt)
# p = r"D:\datasets\ym\永辉测试数据_比对"
# p = r"D:\datasets\ym\广告板遮挡测试\8"
# p = r"D:\datasets\ym\videos\标记视频"
# p = r"D:\datasets\ym\实验室测试"
# p = r"D:\datasets\ym\永辉双摄视频\新建文件夹"
# p = r"\\192.168.1.28\share\测试_202406\0723\0723_2\20240723-112522_"
# p = r"D:\datasets\ym\联华中环"
# p = r"D:\exhibition\images\153112511_0_seek_105.mp4"
# p = r"D:\exhibition\images\image"
p = r"\\192.168.1.28\share\数据\原始数据\小物品数据\视频\82654976401_20241213-143457_front_addGood_5478c9a53bbe_40_17700000001.mp4"
optdict["project"] = r"D:\小物品入侵检测\result"
# optdict["project"] = r"D:\exhibition\result"
if os.path.isdir(p):
files = find_video_imgs(p)
k = 0
for file in files:
optdict["source"] = file
run(**optdict)
k += 1
if k == 1:
break
elif os.path.isfile(p):
optdict["source"] = p
run(**optdict)
if __name__ == '__main__':
main()