更新 detacttracking

This commit is contained in:
lee
2025-01-22 13:16:44 +08:00
parent 2320468c40
commit c9d79f8059
355 changed files with 61097 additions and 1 deletions

View File

@ -0,0 +1,160 @@
# -*- coding: utf-8 -*-
"""
Created on Wed Nov 20 11:17:29 2024
@author: ym
"""
import os
import cv2
import pickle
import numpy as np
from scipy.spatial.distance import cdist
import matplotlib.pyplot as plt
def save_imgpairs(barcode, imgpaths, matrix, savepath, thresh=(0.4, 0.6), ctype="intra"):
if ctype=="intra":
rows, cols = np.triu_indices(matrix.shape[0], k=1) # k=1 表示不包括对角线
mask = matrix[rows, cols] < thresh[1]
indices = list(zip(rows[mask], cols[mask]))
else:
rows, cols = np.where(matrix > thresh[0])
indices = list(zip(rows, cols))
if len(indices):
savepath = os.path.join(savepath, barcode)
if not os.path.exists(savepath):
os.makedirs (savepath)
for idx1, idx2 in indices:
if len(imgpaths) == 1:
img1 = cv2.imread(imgpaths[0][idx1])
img2 = cv2.imread(imgpaths[0][idx2])
elif len(imgpaths) == 2:
img1 = cv2.imread(imgpaths[0][idx1])
img2 = cv2.imread(imgpaths[1][idx2])
simi = matrix[idx1, idx2]
H1, W1 = img1.shape[:2]
H2, W2 = img2.shape[:2]
H, W = max((H1, H2)), max((W1, W2))
img = np.ones((H, 2*W, 3), dtype=np.uint8) *np.array([255, 128, 128])
img[0:H1, 0:W1, :] = img1
img[0:H2, (2*W-W2):, :] = img2
text = f"sim: {simi:.2f}"
org = (10, H-10)
cv2.putText(img, text, org, fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=0.75,
color=(0, 0, 255), thickness=2, lineType=cv2.LINE_AA)
imgpath = os.path.join(savepath, f"{simi:.2f}_{barcode}_{idx1}_{idx2}.png")
cv2.imwrite(imgpath, img)
def feat_analysis(featpath):
savepath = r"D:\exhibition\result\stdfeat"
InterThresh = (0.4, 0.6)
featDict, features= [], []
for filename in os.listdir(featpath):
file, ext = os.path.splitext(filename)
if ext != ".pickle": continue
filepath = os.path.join(featpath, filename)
with open(filepath, 'rb') as f:
bpDict = pickle.load(f)
feat = bpDict["feats_ft32"]
featDict.append(bpDict)
features.append(feat)
N = len(features)
simMatrix = []
intra_simi = np.empty(0)
low_simi_index = {}
for i, feats in enumerate(features):
matrix = 1 - cdist(feats, feats, 'cosine')
simMatrix.append(matrix)
'''提取相似矩阵上三角元素'''
rows, cols = np.triu_indices(matrix.shape[0], k=1) # k=1 表示不包括对角线
upper_tri= matrix[rows, cols]
intra_simi = np.concatenate((intra_simi, upper_tri))
'''保存相似度小于阈值的图像对'''
barcode = featDict[i]["barcode"]
imgpaths = featDict[i]["imgpaths"]
# save_imgpairs(barcode, [imgpaths], matrix, savepath, InterThresh, "intra")
print(f"{barcode} have done!")
Matrix = np.zeros((N, N))
inter_bcds = []
inter_simi = np.empty(0)
for i, feati in enumerate(features):
bcdi = featDict[i]["barcode"]
imgpathi = featDict[i]["imgpaths"]
for j, featj in enumerate(features):
bcdj = featDict[j]["barcode"]
imgpathj = featDict[j]["imgpaths"]
matrix = 1 - cdist(feati, featj, 'cosine')
inter_bcds.append((i, j, bcdi, bcdj))
Matrix[i, j] = np.mean(matrix)
if j>i:
bcd_ij = bcdi+'_'+bcdj
# save_imgpairs(bcd_ij, [imgpathi, imgpathj], matrix, savepath, InterThresh, "inter")
inter_simi = np.concatenate((inter_simi, matrix.ravel()))
print(f"{bcd_ij} have done!")
fig, axs = plt.subplots(2, 1)
axs[0].hist(intra_simi, bins=100, color='blue', edgecolor='black', alpha=0.7)
axs[0].set_xlim(0, 1)
axs[0].set_xlabel('Performance')
axs[0].set_title("inter similarity")
axs[1].hist(inter_simi, bins=100, color='green', edgecolor='black', alpha=0.7)
axs[1].set_xlim(0, 1)
axs[1].set_xlabel('Performance')
axs[1].set_title("inter similarity")
print("Done")
def main():
stdpath = r"D:\exhibition\dataset\feats"
feat_analysis(stdpath)
if __name__ == '__main__':
main()