Files
ieemoo-ai-predict/ieemoo-ai-predict.py
2022-06-01 17:12:45 +08:00

232 lines
9.9 KiB
Python

import sys
#sys.path.append('/opt/')
import argparse
import time
from pathlib import Path
from PIL import Image
import numpy
import numpy as np
import os,base64
import cv2
import torch
import logging
import torch.backends.cudnn as cudnn
from gevent.pywsgi import WSGIServer
from numpy import random
import json
from models.experimental import attempt_load
from utils.datasets import LoadStreams, LoadImages
from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
from utils.plots import plot_one_box
from utils.torch_utils import select_device, load_classifier, time_synchronized
from flask import request, Flask, jsonify, request
#from ocr_system.predict_all import *
import logging
import logging.config
from skywalking import agent, config
SW_SERVER = os.environ.get('SW_AGENT_COLLECTOR_BACKEND_SERVICES')
SW_SERVICE_NAME = os.environ.get('SW_AGENT_NAME')
if SW_SERVER and SW_SERVICE_NAME:
config.init() #采集服务的地址,给自己的服务起个名称
#config.init(collector="123.60.56.51:11800", service='ieemoo-ai-search') #采集服务的地址,给自己的服务起个名称
agent.start()
def setup_logging(path):
if os.path.exists(path):
with open(path, 'r') as f:
config = json.load(f)
logging.config.dictConfig(config)
logger = logging.getLogger("root")
return logger
logger = setup_logging('utils/logging.json')
app = Flask(__name__)
# 日志系统配置
#handler = logging.FileHandler('app.log', encoding='UTF-8')
#handler.setLevel(logging.DEBUG)
#logging_format = logging.Formatter(
# '%(asctime)s - %(levelname)s - %(filename)s - %(funcName)s - %(lineno)s - %(message)s')
#handler.setFormatter(logging_format)
#app.logger.addHandler(handler)
'''
load model
'''
parser = argparse.ArgumentParser()
parser.add_argument('--weights', nargs='+', type=str, default='../module/ieemoo-ai-predict/model/now/', help='model.pt path(s)')
parser.add_argument('--Form', type=str, default='')
parser.add_argument('--source', type=str, default='../module/ieemoo-ai-predict/imgs', help='source') # file/folder, 0 for webcam
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--view-img', action='store_true', help='display results')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--update', action='store_true', help='update all models')
parser.add_argument('--project', default='runs/detect', help='save results to project/name')
parser.add_argument('--name', default='exp', help='save results to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
#opt = parser.parse_args()
opt, unknown = parser.parse_known_args()
def loadModel():
all_model = {}
device = select_device(opt.device)
half = device.type != 'cpu'
for name in os.listdir(opt.weights):
if '.pt' in name:
all_model[name.split('.')[0]] = attempt_load(os.sep.join([opt.weights, name]), map_location=device)
return all_model
def CheckRange(code):
with open('../module/ieemoo-ai-predict/data/goodsCategory.json', 'r', encoding='utf-8') as jsonPath:
loadDict = json.load(jsonPath)
for key in loadDict:
if code in loadDict[key]:
return key, loadDict[key]
#return key, code
return 'nonentity',None
def detect(names, save_img=False, model=None):
source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
save_img = not opt.nosave and not source.endswith('.txt') # save inference images
webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
('rtsp://', 'rtmp://', 'http://'))
# Initialize
set_logging()
device = select_device(opt.device)
half = device.type != 'cpu' # half precision only supported on CUDA
# Load model
#model = attempt_load(weights, map_location=device) # load FP32 model
stride = int(model.stride.max()) # model stride
imgsz = check_img_size(imgsz, s=stride) # check img_size
if half:
model.half() # to FP16
# Second-stage classifier
classify = False
if classify:
modelc = load_classifier(name='resnet101', n=2) # initialize
modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()
# Set Dataloader
vid_path, vid_writer = None, None
if webcam:
view_img = check_imshow()
cudnn.benchmark = True # set True to speed up constant image size inference
dataset = LoadStreams(source, img_size=imgsz, stride=stride)
else:
dataset = LoadImages(source, img_size=imgsz, stride=stride)
# Get names and colors
#names = model.module.names if hasattr(model, 'module') else model.names
names = names
colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
# Run inference
if device.type != 'cpu':
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
t0 = time.time()
for path, img, im0s, vid_cap in dataset:
img = torch.from_numpy(img).to(device)
img = img.half() if half else img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Inference
t1 = time_synchronized()
pred = model(img, augment=opt.augment)[0]
# Apply NMS
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
t2 = time_synchronized()
# Apply Classifier
if classify:
pred = apply_classifier(pred, modelc, img, im0s)
# Process detections
for i, det in enumerate(pred): # detections per image
if webcam: # batch_size >= 1
p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
else:
p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
p = Path(p) # to Path
s += '%gx%g ' % img.shape[2:] # print string
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
result = {}
if len(det) == 0:
result["TargetDetect"] = 'Search fail'
result["tag"] = False
return result
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s+= "{n} {names[int(c)]}{'s' * (n > 1)}, "# add to string
# return results
result = {}
res = []
for nu , data in enumerate(reversed(det.cpu()).numpy()):
res.append( {"xy1":(str(data[0]),str(data[1])), "xy2":(str(data[2]),str(data[3])), "precision":str(data[4]), "Class":names[int(data[5])]})
result["TargetDetect"] = res
result["tag"] = True
print(result)
return result
all_model = loadModel()
#barcode, ocr = loadOcrModel()
@app.route('/predict',methods=['POST'])
def predict():
if request.method == 'POST':
try:
data = request.get_data()
#print(data)
data_str = data.decode("utf-8")
json_data = json.loads(data_str)
pic = json_data.get("file")
code = json_data.get("code")
imgdata = base64.b64decode(pic)
imgdata_np = np.frombuffer(imgdata, dtype='uint8')
image = cv2.imdecode(imgdata_np, cv2.IMREAD_COLOR)
section,names = CheckRange(code)
#print('section',section,names)
if section == 'nonentity' or section not in all_model.keys():
model = None
section = 'nonentity'
else:
model = all_model[section]
cv2.imwrite(os.sep.join(['../module/ieemoo-ai-predict/imgs',code+'.jpg']), image)
with torch.no_grad():
if section == 'nonentity':
tar_res = {'tag':False}
tar_res['TargetDetect'] = 'No goods'
else:
tar_res = detect(names, model=model)
#ocr_res = detectOcr(barcode, ocr, 'data/images/'+code+'.jpg')
ocr_res = {"Ocr": {"barcode_rst": "", "barcode_success": "false", "ocr_rst": "", "ocr_success": False}}
ocr_res.update(tar_res)
os.remove(os.sep.join(['../module/ieemoo-ai-predict/imgs',code+'.jpg']))
logger.info(ocr_res)
return ocr_res
except Exception as e:
logger.warning(e)
return {"Ocr": {"barcode_rst": "", "barcode_success": "false", "ocr_rst": "", "ocr_success": False}, "TargetDetect": {""}, "tag": False}
if __name__ == '__main__':
#http_server = WSGIServer(('0.0.0.0', 8000), app)
#http_server.serve_forever()
app.run(host='192.168.1.142', port=8000)