diff --git a/README.md b/README.md deleted file mode 100644 index 6e3f387..0000000 --- a/README.md +++ /dev/null @@ -1,154 +0,0 @@ - - -  - -CI CPU testing - -This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices evolved over thousands of hours of training and evolution on anonymized client datasets. **All code and models are under active development, and are subject to modification or deletion without notice.** Use at your own risk. - -** GPU Speed measures end-to-end time per image averaged over 5000 COCO val2017 images using a V100 GPU with batch size 32, and includes image preprocessing, PyTorch FP16 inference, postprocessing and NMS. EfficientDet data from [google/automl](https://github.com/google/automl) at batch size 8. - -- **January 5, 2021**: [v4.0 release](https://github.com/ultralytics/yolov5/releases/tag/v4.0): nn.SiLU() activations, [Weights & Biases](https://wandb.ai/site?utm_campaign=repo_yolo_readme) logging, [PyTorch Hub](https://pytorch.org/hub/ultralytics_yolov5/) integration. -- **August 13, 2020**: [v3.0 release](https://github.com/ultralytics/yolov5/releases/tag/v3.0): nn.Hardswish() activations, data autodownload, native AMP. -- **July 23, 2020**: [v2.0 release](https://github.com/ultralytics/yolov5/releases/tag/v2.0): improved model definition, training and mAP. -- **June 22, 2020**: [PANet](https://arxiv.org/abs/1803.01534) updates: new heads, reduced parameters, improved speed and mAP [364fcfd](https://github.com/ultralytics/yolov5/commit/364fcfd7dba53f46edd4f04c037a039c0a287972). -- **June 19, 2020**: [FP16](https://pytorch.org/docs/stable/nn.html#torch.nn.Module.half) as new default for smaller checkpoints and faster inference [d4c6674](https://github.com/ultralytics/yolov5/commit/d4c6674c98e19df4c40e33a777610a18d1961145). - - -## Pretrained Checkpoints - -| Model | size | APval | APtest | AP50 | SpeedV100 | FPSV100 || params | GFLOPS | -|---------- |------ |------ |------ |------ | -------- | ------| ------ |------ | :------: | -| [YOLOv5s](https://github.com/ultralytics/yolov5/releases) |640 |36.8 |36.8 |55.6 |**2.2ms** |**455** ||7.3M |17.0 -| [YOLOv5m](https://github.com/ultralytics/yolov5/releases) |640 |44.5 |44.5 |63.1 |2.9ms |345 ||21.4M |51.3 -| [YOLOv5l](https://github.com/ultralytics/yolov5/releases) |640 |48.1 |48.1 |66.4 |3.8ms |264 ||47.0M |115.4 -| [YOLOv5x](https://github.com/ultralytics/yolov5/releases) |640 |**50.1** |**50.1** |**68.7** |6.0ms |167 ||87.7M |218.8 -| | | | | | | || | -| [YOLOv5x](https://github.com/ultralytics/yolov5/releases) + TTA |832 |**51.9** |**51.9** |**69.6** |24.9ms |40 ||87.7M |1005.3 - - - -** APtest denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results denote val2017 accuracy. -** All AP numbers are for single-model single-scale without ensemble or TTA. **Reproduce mAP** by `python test.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65` -** SpeedGPU averaged over 5000 COCO val2017 images using a GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) V100 instance, and includes image preprocessing, FP16 inference, postprocessing and NMS. NMS is 1-2ms/img. **Reproduce speed** by `python test.py --data coco.yaml --img 640 --conf 0.25 --iou 0.45` -** All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation). -** Test Time Augmentation ([TTA](https://github.com/ultralytics/yolov5/issues/303)) runs at 3 image sizes. **Reproduce TTA** by `python test.py --data coco.yaml --img 832 --iou 0.65 --augment` - - -## Requirements - -Python 3.8 or later with all [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) dependencies installed, including `torch>=1.7`. To install run: -```bash -$ pip install -r requirements.txt -``` - - -## Tutorials - -* [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data)  🚀 RECOMMENDED -* [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results)  ☘️ RECOMMENDED -* [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289)  🌟 NEW -* [Supervisely Ecosystem](https://github.com/ultralytics/yolov5/issues/2518)  🌟 NEW -* [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475) -* [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36)  ⭐ NEW -* [ONNX and TorchScript Export](https://github.com/ultralytics/yolov5/issues/251) -* [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303) -* [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318) -* [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304) -* [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607) -* [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314)  ⭐ NEW -* [TensorRT Deployment](https://github.com/wang-xinyu/tensorrtx) - - -## Environments - -YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled): - -- **Google Colab and Kaggle** notebooks with free GPU: Open In Colab Open In Kaggle -- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart) -- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart) -- **Docker Image**. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) Docker Pulls - - -## Inference - -detect.py runs inference on a variety of sources, downloading models automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`. -```bash -$ python detect.py --source 0 # webcam - file.jpg # image - file.mp4 # video - path/ # directory - path/*.jpg # glob - rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa # rtsp stream - rtmp://192.168.1.105/live/test # rtmp stream - http://112.50.243.8/PLTV/88888888/224/3221225900/1.m3u8 # http stream -``` - -To run inference on example images in `data/images`: -```bash -$ python detect.py --source data/images --weights yolov5s.pt --conf 0.25 - -Namespace(agnostic_nms=False, augment=False, classes=None, conf_thres=0.25, device='', exist_ok=False, img_size=640, iou_thres=0.45, name='exp', project='runs/detect', save_conf=False, save_txt=False, source='data/images/', update=False, view_img=False, weights=['yolov5s.pt']) -YOLOv5 v4.0-96-g83dc1b4 torch 1.7.0+cu101 CUDA:0 (Tesla V100-SXM2-16GB, 16160.5MB) - -Fusing layers... -Model Summary: 224 layers, 7266973 parameters, 0 gradients, 17.0 GFLOPS -image 1/2 /content/yolov5/data/images/bus.jpg: 640x480 4 persons, 1 bus, Done. (0.010s) -image 2/2 /content/yolov5/data/images/zidane.jpg: 384x640 2 persons, 1 tie, Done. (0.011s) -Results saved to runs/detect/exp2 -Done. (0.103s) -``` - - -### PyTorch Hub - -To run **batched inference** with YOLOv5 and [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36): -```python -import torch - -# Model -model = torch.hub.load('ultralytics/yolov5', 'yolov5s') - -# Images -dir = 'https://github.com/ultralytics/yolov5/raw/master/data/images/' -imgs = [dir + f for f in ('zidane.jpg', 'bus.jpg')] # batch of images - -# Inference -results = model(imgs) -results.print() # or .show(), .save() -``` - - -## Training - -Run commands below to reproduce results on [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh) dataset (dataset auto-downloads on first use). Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the largest `--batch-size` your GPU allows (batch sizes shown for 16 GB devices). -```bash -$ python train.py --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size 64 - yolov5m 40 - yolov5l 24 - yolov5x 16 -``` - - - -## Citation - -[![DOI](https://zenodo.org/badge/264818686.svg)](https://zenodo.org/badge/latestdoi/264818686) - - -## About Us - -Ultralytics is a U.S.-based particle physics and AI startup with over 6 years of expertise supporting government, academic and business clients. We offer a wide range of vision AI services, spanning from simple expert advice up to delivery of fully customized, end-to-end production solutions, including: -- **Cloud-based AI** systems operating on **hundreds of HD video streams in realtime.** -- **Edge AI** integrated into custom iOS and Android apps for realtime **30 FPS video inference.** -- **Custom data training**, hyperparameter evolution, and model exportation to any destination. - -For business inquiries and professional support requests please visit us at https://www.ultralytics.com. - - -## Contact - -**Issues should be raised directly in the repository.** For business inquiries or professional support requests please visit https://www.ultralytics.com or email Glenn Jocher at glenn.jocher@ultralytics.com.