391 lines
16 KiB
Python
Executable File
391 lines
16 KiB
Python
Executable File
# coding=utf-8
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import copy
|
|
import logging
|
|
import math
|
|
|
|
from os.path import join as pjoin
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import numpy as np
|
|
|
|
from torch.nn import CrossEntropyLoss, Dropout, Softmax, Linear, Conv2d, LayerNorm
|
|
from torch.nn.modules.utils import _pair
|
|
from scipy import ndimage
|
|
|
|
import models.configs as configs
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
ATTENTION_Q = "MultiHeadDotProductAttention_1/query"
|
|
ATTENTION_K = "MultiHeadDotProductAttention_1/key"
|
|
ATTENTION_V = "MultiHeadDotProductAttention_1/value"
|
|
ATTENTION_OUT = "MultiHeadDotProductAttention_1/out"
|
|
FC_0 = "MlpBlock_3/Dense_0"
|
|
FC_1 = "MlpBlock_3/Dense_1"
|
|
ATTENTION_NORM = "LayerNorm_0"
|
|
MLP_NORM = "LayerNorm_2"
|
|
|
|
def np2th(weights, conv=False):
|
|
"""Possibly convert HWIO to OIHW."""
|
|
if conv:
|
|
weights = weights.transpose([3, 2, 0, 1])
|
|
return torch.from_numpy(weights)
|
|
|
|
def swish(x):
|
|
return x * torch.sigmoid(x)
|
|
|
|
ACT2FN = {"gelu": torch.nn.functional.gelu, "relu": torch.nn.functional.relu, "swish": swish}
|
|
|
|
class LabelSmoothing(nn.Module):
|
|
"""
|
|
NLL loss with label smoothing.
|
|
"""
|
|
def __init__(self, smoothing=0.0):
|
|
"""
|
|
Constructor for the LabelSmoothing module.
|
|
:param smoothing: label smoothing factor
|
|
"""
|
|
super(LabelSmoothing, self).__init__()
|
|
self.confidence = 1.0 - smoothing
|
|
self.smoothing = smoothing
|
|
|
|
def forward(self, x, target):
|
|
logprobs = torch.nn.functional.log_softmax(x, dim=-1)
|
|
|
|
nll_loss = -logprobs.gather(dim=-1, index=target.unsqueeze(1))
|
|
nll_loss = nll_loss.squeeze(1)
|
|
smooth_loss = -logprobs.mean(dim=-1)
|
|
loss = self.confidence * nll_loss + self.smoothing * smooth_loss
|
|
return loss.mean()
|
|
|
|
class Attention(nn.Module):
|
|
def __init__(self, config):
|
|
super(Attention, self).__init__()
|
|
self.num_attention_heads = config.transformer["num_heads"]
|
|
self.attention_head_size = int(config.hidden_size / self.num_attention_heads)
|
|
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
|
|
|
self.query = Linear(config.hidden_size, self.all_head_size)
|
|
self.key = Linear(config.hidden_size, self.all_head_size)
|
|
self.value = Linear(config.hidden_size, self.all_head_size)
|
|
|
|
self.out = Linear(config.hidden_size, config.hidden_size)
|
|
self.attn_dropout = Dropout(config.transformer["attention_dropout_rate"])
|
|
self.proj_dropout = Dropout(config.transformer["attention_dropout_rate"])
|
|
|
|
self.softmax = Softmax(dim=-1)
|
|
|
|
def transpose_for_scores(self, x):
|
|
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
|
x = x.view(*new_x_shape)
|
|
return x.permute(0, 2, 1, 3)
|
|
|
|
def forward(self, hidden_states):
|
|
mixed_query_layer = self.query(hidden_states)
|
|
mixed_key_layer = self.key(hidden_states)
|
|
mixed_value_layer = self.value(hidden_states)
|
|
|
|
query_layer = self.transpose_for_scores(mixed_query_layer)
|
|
key_layer = self.transpose_for_scores(mixed_key_layer)
|
|
value_layer = self.transpose_for_scores(mixed_value_layer)
|
|
|
|
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
|
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
|
attention_probs = self.softmax(attention_scores)
|
|
weights = attention_probs
|
|
attention_probs = self.attn_dropout(attention_probs)
|
|
|
|
context_layer = torch.matmul(attention_probs, value_layer)
|
|
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
|
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
|
context_layer = context_layer.view(*new_context_layer_shape)
|
|
attention_output = self.out(context_layer)
|
|
attention_output = self.proj_dropout(attention_output)
|
|
return attention_output, weights
|
|
|
|
class Mlp(nn.Module):
|
|
def __init__(self, config):
|
|
super(Mlp, self).__init__()
|
|
self.fc1 = Linear(config.hidden_size, config.transformer["mlp_dim"])
|
|
self.fc2 = Linear(config.transformer["mlp_dim"], config.hidden_size)
|
|
self.act_fn = ACT2FN["gelu"]
|
|
self.dropout = Dropout(config.transformer["dropout_rate"])
|
|
|
|
self._init_weights()
|
|
|
|
def _init_weights(self):
|
|
nn.init.xavier_uniform_(self.fc1.weight)
|
|
nn.init.xavier_uniform_(self.fc2.weight)
|
|
nn.init.normal_(self.fc1.bias, std=1e-6)
|
|
nn.init.normal_(self.fc2.bias, std=1e-6)
|
|
|
|
def forward(self, x):
|
|
x = self.fc1(x)
|
|
x = self.act_fn(x)
|
|
x = self.dropout(x)
|
|
x = self.fc2(x)
|
|
x = self.dropout(x)
|
|
return x
|
|
|
|
class Embeddings(nn.Module):
|
|
"""Construct the embeddings from patch, position embeddings.
|
|
"""
|
|
def __init__(self, config, img_size, in_channels=3):
|
|
super(Embeddings, self).__init__()
|
|
self.hybrid = None
|
|
img_size = _pair(img_size)
|
|
|
|
patch_size = _pair(config.patches["size"])
|
|
if config.split == 'non-overlap':
|
|
n_patches = (img_size[0] // patch_size[0]) * (img_size[1] // patch_size[1])
|
|
self.patch_embeddings = Conv2d(in_channels=in_channels,
|
|
out_channels=config.hidden_size,
|
|
kernel_size=patch_size,
|
|
stride=patch_size)
|
|
elif config.split == 'overlap':
|
|
n_patches = ((img_size[0] - patch_size[0]) // config.slide_step + 1) * ((img_size[1] - patch_size[1]) // config.slide_step + 1)
|
|
self.patch_embeddings = Conv2d(in_channels=in_channels,
|
|
out_channels=config.hidden_size,
|
|
kernel_size=patch_size,
|
|
stride=(config.slide_step, config.slide_step))
|
|
self.position_embeddings = nn.Parameter(torch.zeros(1, n_patches+1, config.hidden_size))
|
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
|
|
|
|
self.dropout = Dropout(config.transformer["dropout_rate"])
|
|
|
|
def forward(self, x):
|
|
B = x.shape[0]
|
|
cls_tokens = self.cls_token.expand(B, -1, -1)
|
|
|
|
if self.hybrid:
|
|
x = self.hybrid_model(x)
|
|
x = self.patch_embeddings(x)
|
|
x = x.flatten(2)
|
|
x = x.transpose(-1, -2)
|
|
x = torch.cat((cls_tokens, x), dim=1)
|
|
|
|
embeddings = x + self.position_embeddings
|
|
embeddings = self.dropout(embeddings)
|
|
return embeddings
|
|
|
|
class Block(nn.Module):
|
|
def __init__(self, config):
|
|
super(Block, self).__init__()
|
|
self.hidden_size = config.hidden_size
|
|
self.attention_norm = LayerNorm(config.hidden_size, eps=1e-6)
|
|
self.ffn_norm = LayerNorm(config.hidden_size, eps=1e-6)
|
|
self.ffn = Mlp(config)
|
|
self.attn = Attention(config)
|
|
|
|
def forward(self, x):
|
|
h = x
|
|
x = self.attention_norm(x)
|
|
x, weights = self.attn(x)
|
|
x = x + h
|
|
|
|
h = x
|
|
x = self.ffn_norm(x)
|
|
x = self.ffn(x)
|
|
x = x + h
|
|
return x, weights
|
|
|
|
def load_from(self, weights, n_block):
|
|
ROOT = f"Transformer/encoderblock_{n_block}"
|
|
with torch.no_grad():
|
|
query_weight = np2th(weights[pjoin(ROOT, ATTENTION_Q, "kernel")]).view(self.hidden_size, self.hidden_size).t()
|
|
key_weight = np2th(weights[pjoin(ROOT, ATTENTION_K, "kernel")]).view(self.hidden_size, self.hidden_size).t()
|
|
value_weight = np2th(weights[pjoin(ROOT, ATTENTION_V, "kernel")]).view(self.hidden_size, self.hidden_size).t()
|
|
out_weight = np2th(weights[pjoin(ROOT, ATTENTION_OUT, "kernel")]).view(self.hidden_size, self.hidden_size).t()
|
|
|
|
query_bias = np2th(weights[pjoin(ROOT, ATTENTION_Q, "bias")]).view(-1)
|
|
key_bias = np2th(weights[pjoin(ROOT, ATTENTION_K, "bias")]).view(-1)
|
|
value_bias = np2th(weights[pjoin(ROOT, ATTENTION_V, "bias")]).view(-1)
|
|
out_bias = np2th(weights[pjoin(ROOT, ATTENTION_OUT, "bias")]).view(-1)
|
|
|
|
self.attn.query.weight.copy_(query_weight)
|
|
self.attn.key.weight.copy_(key_weight)
|
|
self.attn.value.weight.copy_(value_weight)
|
|
self.attn.out.weight.copy_(out_weight)
|
|
self.attn.query.bias.copy_(query_bias)
|
|
self.attn.key.bias.copy_(key_bias)
|
|
self.attn.value.bias.copy_(value_bias)
|
|
self.attn.out.bias.copy_(out_bias)
|
|
|
|
mlp_weight_0 = np2th(weights[pjoin(ROOT, FC_0, "kernel")]).t()
|
|
mlp_weight_1 = np2th(weights[pjoin(ROOT, FC_1, "kernel")]).t()
|
|
mlp_bias_0 = np2th(weights[pjoin(ROOT, FC_0, "bias")]).t()
|
|
mlp_bias_1 = np2th(weights[pjoin(ROOT, FC_1, "bias")]).t()
|
|
|
|
self.ffn.fc1.weight.copy_(mlp_weight_0)
|
|
self.ffn.fc2.weight.copy_(mlp_weight_1)
|
|
self.ffn.fc1.bias.copy_(mlp_bias_0)
|
|
self.ffn.fc2.bias.copy_(mlp_bias_1)
|
|
|
|
self.attention_norm.weight.copy_(np2th(weights[pjoin(ROOT, ATTENTION_NORM, "scale")]))
|
|
self.attention_norm.bias.copy_(np2th(weights[pjoin(ROOT, ATTENTION_NORM, "bias")]))
|
|
self.ffn_norm.weight.copy_(np2th(weights[pjoin(ROOT, MLP_NORM, "scale")]))
|
|
self.ffn_norm.bias.copy_(np2th(weights[pjoin(ROOT, MLP_NORM, "bias")]))
|
|
|
|
|
|
class Part_Attention(nn.Module):
|
|
def __init__(self):
|
|
super(Part_Attention, self).__init__()
|
|
|
|
def forward(self, x):
|
|
length = len(x)
|
|
last_map = x[0]
|
|
for i in range(1, length):
|
|
last_map = torch.matmul(x[i], last_map)
|
|
last_map = last_map[:,:,0,1:]
|
|
|
|
_, max_inx = last_map.max(2)
|
|
return _, max_inx
|
|
|
|
|
|
class Encoder(nn.Module):
|
|
def __init__(self, config):
|
|
super(Encoder, self).__init__()
|
|
self.layer = nn.ModuleList()
|
|
for _ in range(config.transformer["num_layers"] - 1):
|
|
layer = Block(config)
|
|
self.layer.append(copy.deepcopy(layer))
|
|
self.part_select = Part_Attention()
|
|
self.part_layer = Block(config)
|
|
self.part_norm = LayerNorm(config.hidden_size, eps=1e-6)
|
|
|
|
def forward(self, hidden_states):
|
|
attn_weights = []
|
|
for layer in self.layer:
|
|
hidden_states, weights = layer(hidden_states)
|
|
attn_weights.append(weights)
|
|
part_num, part_inx = self.part_select(attn_weights)
|
|
part_inx = part_inx + 1
|
|
parts = []
|
|
B, num = part_inx.shape
|
|
for i in range(B):
|
|
parts.append(hidden_states[i, part_inx[i,:]])
|
|
parts = torch.stack(parts).squeeze(1)
|
|
concat = torch.cat((hidden_states[:,0].unsqueeze(1), parts), dim=1)
|
|
part_states, part_weights = self.part_layer(concat)
|
|
part_encoded = self.part_norm(part_states)
|
|
|
|
return part_encoded
|
|
|
|
|
|
class Transformer(nn.Module):
|
|
def __init__(self, config, img_size):
|
|
super(Transformer, self).__init__()
|
|
self.embeddings = Embeddings(config, img_size=img_size)
|
|
self.encoder = Encoder(config)
|
|
|
|
def forward(self, input_ids):
|
|
embedding_output = self.embeddings(input_ids)
|
|
part_encoded = self.encoder(embedding_output)
|
|
return part_encoded
|
|
|
|
|
|
class VisionTransformer(nn.Module):
|
|
def __init__(self, config, img_size=224, num_classes=21843, smoothing_value=0, zero_head=False):
|
|
super(VisionTransformer, self).__init__()
|
|
self.num_classes = num_classes
|
|
self.smoothing_value = smoothing_value
|
|
self.zero_head = zero_head
|
|
self.classifier = config.classifier
|
|
self.transformer = Transformer(config, img_size)
|
|
self.part_head = Linear(config.hidden_size, num_classes)
|
|
|
|
def forward(self, x, labels=None):
|
|
part_tokens = self.transformer(x)
|
|
part_logits = self.part_head(part_tokens[:, 0])
|
|
|
|
if labels is not None:
|
|
if self.smoothing_value == 0:
|
|
loss_fct = CrossEntropyLoss()
|
|
else:
|
|
loss_fct = LabelSmoothing(self.smoothing_value)
|
|
part_loss = loss_fct(part_logits.view(-1, self.num_classes), labels.view(-1))
|
|
contrast_loss = con_loss(part_tokens[:, 0], labels.view(-1))
|
|
loss = part_loss + contrast_loss
|
|
return loss, part_logits
|
|
else:
|
|
return part_logits
|
|
|
|
def load_from(self, weights):
|
|
with torch.no_grad():
|
|
self.transformer.embeddings.patch_embeddings.weight.copy_(np2th(weights["embedding/kernel"], conv=True))
|
|
self.transformer.embeddings.patch_embeddings.bias.copy_(np2th(weights["embedding/bias"]))
|
|
self.transformer.embeddings.cls_token.copy_(np2th(weights["cls"]))
|
|
self.transformer.encoder.part_norm.weight.copy_(np2th(weights["Transformer/encoder_norm/scale"]))
|
|
self.transformer.encoder.part_norm.bias.copy_(np2th(weights["Transformer/encoder_norm/bias"]))
|
|
|
|
posemb = np2th(weights["Transformer/posembed_input/pos_embedding"])
|
|
posemb_new = self.transformer.embeddings.position_embeddings
|
|
if posemb.size() == posemb_new.size():
|
|
self.transformer.embeddings.position_embeddings.copy_(posemb)
|
|
else:
|
|
logger.info("load_pretrained: resized variant: %s to %s" % (posemb.size(), posemb_new.size()))
|
|
ntok_new = posemb_new.size(1)
|
|
|
|
if self.classifier == "token":
|
|
posemb_tok, posemb_grid = posemb[:, :1], posemb[0, 1:]
|
|
ntok_new -= 1
|
|
else:
|
|
posemb_tok, posemb_grid = posemb[:, :0], posemb[0]
|
|
|
|
gs_old = int(np.sqrt(len(posemb_grid)))
|
|
gs_new = int(np.sqrt(ntok_new))
|
|
print('load_pretrained: grid-size from %s to %s' % (gs_old, gs_new))
|
|
posemb_grid = posemb_grid.reshape(gs_old, gs_old, -1)
|
|
|
|
zoom = (gs_new / gs_old, gs_new / gs_old, 1)
|
|
posemb_grid = ndimage.zoom(posemb_grid, zoom, order=1)
|
|
posemb_grid = posemb_grid.reshape(1, gs_new * gs_new, -1)
|
|
posemb = np.concatenate([posemb_tok, posemb_grid], axis=1)
|
|
self.transformer.embeddings.position_embeddings.copy_(np2th(posemb))
|
|
|
|
for bname, block in self.transformer.encoder.named_children():
|
|
if bname.startswith('part') == False:
|
|
for uname, unit in block.named_children():
|
|
unit.load_from(weights, n_block=uname)
|
|
|
|
if self.transformer.embeddings.hybrid:
|
|
self.transformer.embeddings.hybrid_model.root.conv.weight.copy_(np2th(weights["conv_root/kernel"], conv=True))
|
|
gn_weight = np2th(weights["gn_root/scale"]).view(-1)
|
|
gn_bias = np2th(weights["gn_root/bias"]).view(-1)
|
|
self.transformer.embeddings.hybrid_model.root.gn.weight.copy_(gn_weight)
|
|
self.transformer.embeddings.hybrid_model.root.gn.bias.copy_(gn_bias)
|
|
|
|
for bname, block in self.transformer.embeddings.hybrid_model.body.named_children():
|
|
for uname, unit in block.named_children():
|
|
unit.load_from(weights, n_block=bname, n_unit=uname)
|
|
|
|
|
|
def con_loss(features, labels):
|
|
B, _ = features.shape
|
|
features = F.normalize(features)
|
|
cos_matrix = features.mm(features.t())
|
|
pos_label_matrix = torch.stack([labels == labels[i] for i in range(B)]).float()
|
|
neg_label_matrix = 1 - pos_label_matrix
|
|
pos_cos_matrix = 1 - cos_matrix
|
|
neg_cos_matrix = cos_matrix - 0.4
|
|
neg_cos_matrix[neg_cos_matrix < 0] = 0
|
|
loss = (pos_cos_matrix * pos_label_matrix).sum() + (neg_cos_matrix * neg_label_matrix).sum()
|
|
loss /= (B * B)
|
|
return loss
|
|
|
|
|
|
CONFIGS = {
|
|
'ViT-B_16': configs.get_b16_config(),
|
|
'ViT-B_32': configs.get_b32_config(),
|
|
'ViT-L_16': configs.get_l16_config(),
|
|
'ViT-L_32': configs.get_l32_config(),
|
|
'ViT-H_14': configs.get_h14_config(),
|
|
'testing': configs.get_testing(),
|
|
}
|