144 lines
5.8 KiB
Python
Executable File
144 lines
5.8 KiB
Python
Executable File
# -*- coding: utf-8 -*-
|
|
from flask import request, Flask
|
|
import numpy as np
|
|
import json
|
|
import time
|
|
import cv2, base64
|
|
import argparse
|
|
import sys, os
|
|
import torch
|
|
from gevent.pywsgi import WSGIServer
|
|
from PIL import Image
|
|
from torchvision import transforms
|
|
from models.modeling import VisionTransformer, CONFIGS
|
|
sys.path.insert(0, ".")
|
|
|
|
import logging.config
|
|
from skywalking import agent, config
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1"
|
|
SW_SERVER = os.environ.get('SW_AGENT_COLLECTOR_BACKEND_SERVICES')
|
|
SW_SERVICE_NAME = os.environ.get('SW_AGENT_NAME')
|
|
if SW_SERVER and SW_SERVICE_NAME:
|
|
config.init() #采集服务的地址,给自己的服务起个名称
|
|
#config.init(collector="123.60.56.51:11800", service='ieemoo-ai-search') #采集服务的地址,给自己的服务起个名称
|
|
agent.start()
|
|
def setup_logging(path):
|
|
if os.path.exists(path):
|
|
with open(path, 'r') as f:
|
|
config = json.load(f)
|
|
logging.config.dictConfig(config)
|
|
logger = logging.getLogger("root")
|
|
return logger
|
|
logger = setup_logging('utils/logging.json')
|
|
|
|
|
|
app = Flask(__name__)
|
|
app.use_reloader=False
|
|
|
|
|
|
def parse_args(model_file="../module/ieemoo-ai-isempty/model/now/emptyjudge5_checkpoint.bin"):
|
|
#def parse_args(model_file="output/emptyjudge5_checkpoint.bin"):
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--img_size", default=448, type=int, help="Resolution size")
|
|
parser.add_argument('--split', type=str, default='overlap', help="Split method")
|
|
parser.add_argument('--slide_step', type=int, default=12, help="Slide step for overlap split")
|
|
parser.add_argument('--smoothing_value', type=float, default=0.0, help="Label smoothing value")
|
|
parser.add_argument("--pretrained_model", type=str, default=model_file, help="load pretrained model")
|
|
opt, unknown = parser.parse_known_args()
|
|
return opt
|
|
|
|
|
|
class Predictor(object):
|
|
def __init__(self, args):
|
|
self.args = args
|
|
self.args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
#print(self.args.device)
|
|
self.args.nprocs = torch.cuda.device_count()
|
|
self.cls_dict = {}
|
|
self.num_classes = 0
|
|
self.model = None
|
|
self.prepare_model()
|
|
self.test_transform = transforms.Compose([transforms.Resize((448, 448), Image.BILINEAR),
|
|
transforms.ToTensor(),
|
|
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
|
|
|
|
def prepare_model(self):
|
|
config = CONFIGS["ViT-B_16"]
|
|
config.split = self.args.split
|
|
config.slide_step = self.args.slide_step
|
|
model_name = os.path.basename(self.args.pretrained_model).replace("_checkpoint.bin", "")
|
|
#print("use model_name: ", model_name)
|
|
self.num_classes = 5
|
|
self.cls_dict = {0: "noemp", 1: "yesemp", 2: "hard", 3: "fly", 4: "stack"}
|
|
self.model = VisionTransformer(config, self.args.img_size, zero_head=True, num_classes=self.num_classes, smoothing_value=self.args.smoothing_value)
|
|
if self.args.pretrained_model is not None:
|
|
if not torch.cuda.is_available():
|
|
pretrained_model = torch.load(self.args.pretrained_model, map_location=torch.device('cpu'))['model']
|
|
self.model.load_state_dict(pretrained_model)
|
|
else:
|
|
pretrained_model = torch.load(self.args.pretrained_model)['model']
|
|
self.model.load_state_dict(pretrained_model)
|
|
self.model.eval()
|
|
self.model.to(self.args.device)
|
|
#self.model.eval()
|
|
|
|
def normal_predict(self, img_data, result):
|
|
# img = Image.open(img_path)
|
|
if img_data is None:
|
|
#print('error, img data is None')
|
|
logger.warning('error, img data is None')
|
|
return result
|
|
else:
|
|
with torch.no_grad():
|
|
x = self.test_transform(img_data)
|
|
if torch.cuda.is_available():
|
|
x = x.cuda()
|
|
part_logits = self.model(x.unsqueeze(0))
|
|
probs = torch.nn.Softmax(dim=-1)(part_logits)
|
|
topN = torch.argsort(probs, dim=-1, descending=True).tolist()
|
|
clas_ids = topN[0][0]
|
|
#clas_ids = 0 if 0==int(clas_ids) or 2 == int(clas_ids) or 3 == int(clas_ids) else 1
|
|
#print("cur_img result: class id: %d, score: %0.3f" % (clas_ids, probs[0, clas_ids].item()))
|
|
result["success"] = "true"
|
|
result["rst_cls"] = str(clas_ids)
|
|
return result
|
|
|
|
|
|
model_file ="../module/ieemoo-ai-isempty/model/now/emptyjudge5_checkpoint.bin"
|
|
#model_file ="output/emptyjudge5_checkpoint.bin"
|
|
args = parse_args(model_file)
|
|
predictor = Predictor(args)
|
|
|
|
|
|
@app.route("/isempty", methods=['POST'])
|
|
def get_isempty():
|
|
start = time.time()
|
|
#print('--------------------EmptyPredict-----------------')
|
|
data = request.get_data()
|
|
ip = request.remote_addr
|
|
#print('------ ip = %s ------' % ip)
|
|
logger.info(ip)
|
|
|
|
json_data = json.loads(data.decode("utf-8"))
|
|
getdateend = time.time()
|
|
#print('get date use time: {0:.2f}s'.format(getdateend - start))
|
|
|
|
pic = json_data.get("pic")
|
|
result = {"success": "false",
|
|
"rst_cls": '-1',
|
|
}
|
|
try:
|
|
imgdata = base64.b64decode(pic)
|
|
imgdata_np = np.frombuffer(imgdata, dtype='uint8')
|
|
img_src = cv2.imdecode(imgdata_np, cv2.IMREAD_COLOR)
|
|
img_data = Image.fromarray(np.uint8(img_src))
|
|
result = predictor.normal_predict(img_data, result) # 1==empty, 0==nonEmpty
|
|
except Exception as e:
|
|
logger.warning(e)
|
|
return repr(result)
|
|
logger.info(repr(result))
|
|
return repr(result)
|
|
|
|
if __name__ == "__main__":
|
|
app.run(host='192.168.1.142', port=8000)
|