Files
ieemoo-ai-isempty/predict.py
2022-09-28 04:04:29 +00:00

156 lines
5.3 KiB
Python
Executable File

import numpy as np
import cv2
import time
import os
import argparse
import torch
from sklearn.metrics import confusion_matrix
from sklearn.metrics import f1_score
from PIL import Image
from torchvision import transforms
from models.modeling import VisionTransformer, CONFIGS
#模型预测
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--img_size", default=600, type=int, help="Resolution size")
parser.add_argument('--split', type=str, default='overlap', help="Split method") # non-overlap
parser.add_argument('--slide_step', type=int, default=2, help="Slide step for overlap split")
parser.add_argument('--smoothing_value', type=float, default=0.0, help="Label smoothing value\n")
parser.add_argument("--pretrained_model", type=str, default="../module/ieemoo-ai-isempty/model/now/emptyjudge5_checkpoint.bin", help="load pretrained model")
return parser.parse_args()
class Predictor(object):
def __init__(self, args):
self.args = args
self.args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("self.args.device =", self.args.device)
self.args.nprocs = torch.cuda.device_count()
self.cls_dict = {}
self.num_classes = 0
self.model = None
self.prepare_model()
self.test_transform = transforms.Compose([transforms.Resize((600, 600), Image.BILINEAR),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
def prepare_model(self):
config = CONFIGS["ViT-B_16"]
config.split = self.args.split
config.slide_step = self.args.slide_step
self.num_classes = 5
self.cls_dict = {0: "noemp", 1: "yesemp", 2: "hard", 3: "fly", 4: "stack"}
self.model = VisionTransformer(config, self.args.img_size, zero_head=True, num_classes=self.num_classes, smoothing_value=self.args.smoothing_value)
if self.args.pretrained_model is not None:
if not torch.cuda.is_available():
self.model = torch.load(self.args.pretrained_model)
else:
self.model = torch.load(self.args.pretrained_model,map_location='cpu')
self.model.to(self.args.device)
self.model.eval()
def normal_predict(self, img_path):
# img = cv2.imread(img_path)
img = Image.open(img_path)
if img is None:
print(
"Image file failed to read: {}".format(img_path))
else:
x = self.test_transform(img)
if torch.cuda.is_available():
x = x.cuda()
part_logits = self.model(x.unsqueeze(0))
probs = torch.nn.Softmax(dim=-1)(part_logits)
topN = torch.argsort(probs, dim=-1, descending=True).tolist()
clas_ids = topN[0][0]
# print(probs[0, topN[0][0]].item())
return clas_ids, probs[0, clas_ids].item()
if __name__ == "__main__":
args = parse_args()
predictor = Predictor(args)
y_true = []
y_pred = []
test_dir = "./emptyJudge5/images/"
dir_dict = {"noemp":"0", "yesemp":"1", "hard": "2", "fly": "3", "stack": "4"}
total = 0
num = 0
t0 = time.time()
for dir_name, label in dir_dict.items():
cur_folder = os.path.join(test_dir, dir_name)
errorPath = os.path.join(test_dir, dir_name + "_error")
# os.makedirs(errorPath, exist_ok=True)
for cur_file in os.listdir(cur_folder):
total += 1
print("%d processing: %s" % (total, cur_file))
cur_img_file = os.path.join(cur_folder, cur_file)
error_img_dst = os.path.join(errorPath, cur_file)
cur_pred, pred_score = predictor.normal_predict(cur_img_file)
label = 0 if 2 == int(label) or 3 == int(label) or 4 == int(label) else int(label)
cur_pred = 0 if 2 == int(cur_pred) or 3 == int(cur_pred) or 4 == int(cur_pred) else int(cur_pred)
y_true.append(int(label))
y_pred.append(int(cur_pred))
if int(label) == int(cur_pred):
num += 1
# else:
# print(cur_file, "predict: ", cur_pred, "true: ", int(label))
# print(cur_file, "predict: ", cur_pred, "true: ", int(label), "pred_score:", pred_score)
# os.system("cp %s %s" % (cur_img_file, error_img_dst))
t1 = time.time()
print('The cast of time is :%f seconds' % (t1-t0))
rate = float(num)/total
print('The classification accuracy is %f' % rate)
rst_C = confusion_matrix(y_true, y_pred)
rst_f1 = f1_score(y_true, y_pred, average='macro')
print(rst_C)
print(rst_f1)
'''
所有数据集
The cast of time is :160.738966 seconds
The classification accuracy is 0.986836
[[4923 58]
[ 34 1974]]
0.9839851634589902
'''
'''
test_imgs: yesemp=145, noemp=453 大图
output/emptyjudge5_checkpoint.bin
The classification accuracy is 0.976589
[[446 7] 1.5%
[ 7 138]] 4.8%
0.968135799649844
output/emptyjudge4_checkpoint.bin
The classification accuracy is 0.976589
[[450 3] 0.6%
[ 11 134]] 7.5%
0.9675186616384996
test_5cls: yesemp=319, noemp=925 小图
output/emptyjudge4_checkpoint.bin
The classification accuracy is 0.937299
[[885 40] 4.3%
[ 38 281]] 11.9%
0.9179586038961038
'''