Files
ieemoo-ai-isempty/prepara_data.py
2023-09-21 18:28:43 +08:00

120 lines
4.5 KiB
Python
Executable File

import os
import cv2
import numpy as np
import subprocess
import random
# ----------- 改写名称 --------------
# index = 0
# src_dir = "/data/fineGrained/emptyJudge5"
# dst_dir = src_dir + "_new"
# os.makedirs(dst_dir, exist_ok=True)
# for sub in os.listdir(src_dir):
# sub_path = os.path.join(src_dir, sub)
# sub_path_dst = os.path.join(dst_dir, sub)
# os.makedirs(sub_path_dst, exist_ok=True)
# for cur_f in os.listdir(sub_path):
# cur_img = os.path.join(sub_path, cur_f)
# cur_img_dst = os.path.join(sub_path_dst, "a%05d.jpg" % index)
# index += 1
# os.system("mv %s %s" % (cur_img, cur_img_dst))
# ----------- 删除过小图像 --------------
# src_dir = "/data/fineGrained/emptyJudge5"
# for sub in os.listdir(src_dir):
# sub_path = os.path.join(src_dir, sub)
# for cur_f in os.listdir(sub_path):
# filepath = os.path.join(sub_path, cur_f)
# res = subprocess.check_output(['file', filepath])
# pp = res.decode("utf-8").split(",")[-2]
# height = int(pp.split("x")[1])
# width = int(pp.split("x")[0])
# min_l = min(height, width)
# if min_l <= 448:
# os.system("rm %s" % filepath)
# ----------- 获取有效图片并写images.txt --------------
# src_dir = "/data/fineGrained/emptyJudge4/images"
# src_dict = {"noemp":"0", "yesemp":"1", "hard": "2", "stack": "3"}
# all_dict = {"yesemp":[], "noemp":[], "hard": [], "stack": []}
# for sub, value in src_dict.items():
# sub_path = os.path.join(src_dir, sub)
# for cur_f in os.listdir(sub_path):
# all_dict[sub].append(os.path.join(sub, cur_f))
#
# yesnum = len(all_dict["yesemp"])
# nonum = len(all_dict["noemp"])
# hardnum = len(all_dict["hard"])
# stacknum = len(all_dict["stack"])
# thnum = min(yesnum, nonum, hardnum, stacknum)
# images_txt = src_dir + ".txt"
# index = 1
#
# def write_images(cur_list, thnum, fw, index):
# for feat_path in random.sample(cur_list, thnum):
# fw.write(str(index) + " " + feat_path + "\n")
# index += 1
# return index
#
# with open(images_txt, "w") as fw:
# index = write_images(all_dict["noemp"], thnum, fw, index)
# index = write_images(all_dict["yesemp"], thnum, fw, index)
# index = write_images(all_dict["hard"], thnum, fw, index)
# index = write_images(all_dict["stack"], thnum, fw, index)
# ----------- 写 image_class_labels.txt + train_test_split.txt --------------
# src_dir = "/data/fineGrained/emptyJudge4"
# src_dict = {"noemp":"0", "yesemp":"1", "hard": "2", "stack": "3"}
# images_txt = os.path.join(src_dir, "images.txt")
# image_class_labels_txt = os.path.join(src_dir, "image_class_labels.txt")
# imgs_cnt = 0
# with open(image_class_labels_txt, "w") as fw:
# with open(images_txt, "r") as fr:
# for cur_l in fr:
# imgs_cnt += 1
# img_index, img_f = cur_l.strip().split(" ")
# folder_name = img_f.split("/")[0]
# if folder_name in src_dict:
# cur_line = img_index + " " + str(int(src_dict[folder_name])+1)
# fw.write(cur_line + "\n")
#
# train_num = int(imgs_cnt*0.85)
# print("train_num= ", train_num, ", imgs_cnt= ", imgs_cnt)
# all_list = [1]*train_num + [0]*(imgs_cnt-train_num)
# assert len(all_list) == imgs_cnt
# random.shuffle(all_list)
# train_test_split_txt = os.path.join(src_dir, "train_test_split.txt")
# with open(train_test_split_txt, "w") as fw:
# with open(images_txt, "r") as fr:
# for cur_l in fr:
# img_index, img_f = cur_l.strip().split(" ")
# cur_line = img_index + " " + str(all_list[int(img_index) - 1])
# fw.write(cur_line + "\n")
# ----------- 生成标准测试集 --------------
# src_dir = "/data/fineGrained/emptyJudge5/images"
# src_dict = {"noemp":"0", "yesemp":"1", "hard": "2", "fly": "3", "stack": "4"}
# all_dict = {"noemp":[], "yesemp":[], "hard": [], "fly": [], "stack": []}
# for sub, value in src_dict.items():
# sub_path = os.path.join(src_dir, sub)
# for cur_f in os.listdir(sub_path):
# all_dict[sub].append(cur_f)
#
# dst_dir = src_dir + "_test"
# os.makedirs(dst_dir, exist_ok=True)
# for sub, value in src_dict.items():
# sub_path = os.path.join(src_dir, sub)
# sub_path_dst = os.path.join(dst_dir, sub)
# os.makedirs(sub_path_dst, exist_ok=True)
#
# cur_list = all_dict[sub]
# test_num = int(len(cur_list) * 0.05)
# for cur_f in random.sample(cur_list, test_num):
# cur_path = os.path.join(sub_path, cur_f)
# cur_path_dst = os.path.join(sub_path_dst, cur_f)
# os.system("cp %s %s" % (cur_path, cur_path_dst))