# -*- coding: utf-8 -*- from flask import request, Flask import numpy as np import json import time import cv2, base64 import argparse import sys, os import torch from PIL import Image from torchvision import transforms # import logging.config as log_config sys.path.insert(0, ".") #Flask对外服务接口 app = Flask(__name__) #app.use_reloader=False print("Autor:ieemoo_lc&ieemoo_lx") print(torch.__version__) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("--img_size", default=600, type=int, help="Resolution size") parser.add_argument('--split', type=str, default='overlap', help="Split method") parser.add_argument('--slide_step', type=int, default=2, help="Slide step for overlap split") parser.add_argument('--smoothing_value', type=float, default=0.0, help="Label smoothing value") #使用自定义VIT parser.add_argument("--pretrained_model", type=str, default="../module/ieemoo-ai-isempty/model/now/ieemooempty_vit_checkpoint.pth", help="load pretrained model") opt, unknown = parser.parse_known_args() return opt class Predictor(object): def __init__(self, args): self.args = args #self.args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") #self.args.device = torch.device("cpu") #print(self.args.device) #self.args.nprocs = torch.cuda.device_count() self.cls_dict = {} self.num_classes = 0 self.model = None self.prepare_model() self.test_transform = transforms.Compose([transforms.Resize((600, 600), Image.BILINEAR), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) def prepare_model(self): # config = CONFIGS["ViT-B_16"] # config.split = self.args.split # config.slide_step = self.args.slide_step # self.num_classes = 5 # self.cls_dict = {0: "noemp", 1: "yesemp", 2: "hard", 3: "fly", 4: "stack"} # self.model = VisionTransformer(config, self.args.img_size, zero_head=True, num_classes=self.num_classes, smoothing_value=self.args.smoothing_value) # if self.args.pretrained_model is not None: # if not torch.cuda.is_available(): # self.model = torch.load(self.args.pretrained_model) # else: # self.model = torch.load(self.args.pretrained_model,map_location='cpu') self.model = torch.load(self.args.pretrained_model,map_location=torch.device('cpu')) self.model.eval() if torch.cuda.is_available(): self.model.to("cuda") def normal_predict(self, img_data, result): # img = Image.open(img_path) if img_data is None: #print('error, img data is None') print('error, img data is None') return result else: with torch.no_grad(): x = self.test_transform(img_data) if torch.cuda.is_available(): x = x.cuda() part_logits = self.model(x.unsqueeze(0)) probs = torch.nn.Softmax(dim=-1)(part_logits) topN = torch.argsort(probs, dim=-1, descending=True).tolist() clas_ids = topN[0][0] print("cur_img result: class id: %d, score: %0.3f" % (clas_ids, probs[0, clas_ids].item())) if(int(clas_ids)==6 or int(clas_ids)==7): clas_ids = 0 else: clas_ids = 1 result["success"] = "true" result["rst_cls"] = str(clas_ids) return result args = parse_args() predictor = Predictor(args) @app.route("/isempty", methods=['POST']) def get_isempty(): #print("begin") data = request.get_data() json_data = json.loads(data.decode("utf-8")) pic = json_data.get("pic") imgdata = base64.b64decode(pic) result ={} imgdata_np = np.frombuffer(imgdata, dtype='uint8') img_src = cv2.imdecode(imgdata_np, cv2.IMREAD_COLOR) img_data = Image.fromarray(np.uint8(img_src)) result = predictor.normal_predict(img_data, result) # 1==empty, 0==nonEmpty return repr(result) def getByte(path): with open(path, 'rb') as f: img_byte = base64.b64encode(f.read()) img_str = img_byte.decode('utf-8') return img_str if __name__ == "__main__": app.run(host='0.0.0.0', port=8888) # result ={} # imgdata = base64.b64decode(getByte("img.jpg")) # imgdata_np = np.frombuffer(imgdata, dtype='uint8') # img_src = cv2.imdecode(imgdata_np, cv2.IMREAD_COLOR) # img_data = Image.fromarray(np.uint8(img_src)) # result = predictor.normal_predict(img_data, result) # print(result)