# coding=utf-8 import os import torch import numpy as np from PIL import Image from torchvision import transforms import argparse from models.modeling import VisionTransformer, CONFIGS parser = argparse.ArgumentParser() parser.add_argument("--dataset", choices=["CUB_200_2011", "emptyJudge5", "emptyJudge4"], default="emptyJudge5", help="Which dataset.") parser.add_argument("--img_size", default=448, type=int, help="Resolution size") parser.add_argument('--split', type=str, default='overlap', help="Split method") # non-overlap parser.add_argument('--slide_step', type=int, default=12, help="Slide step for overlap split") parser.add_argument('--smoothing_value', type=float, default=0.0, help="Label smoothing value\n") parser.add_argument("--pretrained_model", type=str, default="output/emptyjudge5_checkpoint.bin", help="load pretrained model") args = parser.parse_args() args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") args.nprocs = torch.cuda.device_count() # Prepare Model config = CONFIGS["ViT-B_16"] config.split = args.split config.slide_step = args.slide_step cls_dict = {} num_classes = 0 if args.dataset == "emptyJudge5": num_classes = 5 cls_dict = {0: "noemp", 1: "yesemp", 2: "hard", 3: "fly", 4: "stack"} elif args.dataset == "emptyJudge4": num_classes = 4 cls_dict = {0: "noemp", 1: "yesemp", 2: "hard", 3: "stack"} elif args.dataset == "emptyJudge3": num_classes = 3 cls_dict = {0: "noemp", 1: "yesemp", 2: "hard"} elif args.dataset == "emptyJudge2": num_classes = 2 cls_dict = {0: "noemp", 1: "yesemp"} model = VisionTransformer(config, args.img_size, zero_head=True, num_classes=num_classes, smoothing_value=args.smoothing_value) if args.pretrained_model is not None: pretrained_model = torch.load(args.pretrained_model, map_location=torch.device('cpu'))['model'] model.load_state_dict(pretrained_model) model.to(args.device) model.eval() # test_transform = transforms.Compose([transforms.Resize((600, 600), Image.BILINEAR), # transforms.CenterCrop((448, 448)), # transforms.ToTensor(), # transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) test_transform = transforms.Compose([transforms.Resize((448, 448), Image.BILINEAR), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) img = Image.open("img.jpg") x = test_transform(img) part_logits = model(x.unsqueeze(0)) probs = torch.nn.Softmax(dim=-1)(part_logits) top5 = torch.argsort(probs, dim=-1, descending=True) print("Prediction Label\n") for idx in top5[0, :5]: print(f'{probs[0, idx.item()]:.5f} : {cls_dict[idx.item()]}', end='\n')