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Abstract

Fine-grained visual classification (FGVC) which aims at
recognizing objects from subcategories is a very challeng-
ing task due to the inherently subtle inter-class differences.
Recent works mainly tackle this problem by focusing on how
to locate the most discriminative image regions and rely
on them to improve the capability of networks to capture
subtle variances. Most of these works achieve this by re-
using the backbone network to extract features of selected
regions. However, this strategy inevitably complicates the
pipeline and pushes the proposed regions to contain most
parts of the objects. Recently, vision transformer (ViT)
shows its strong performance in the traditional classifica-
tion task. The self-attention mechanism of the transformer
links every patch token to the classification token. The
strength of the attention link can be intuitively considered
as an indicator of the importance of tokens. In this work,
we propose a novel transformer-based framework TransFG
where we integrate all raw attention weights of the trans-
former into an attention map for guiding the network to ef-
fectively and accurately select discriminative image patches
and compute their relations. A contrastive loss is applied
to further enlarge the distance between feature representa-
tions of similar sub-classes. We demonstrate the value of
TransFG by conducting experiments on five popular fine-
grained benchmarks: CUB-200-2011, Stanford Cars, Stan-
ford Dogs, NABirds and iNat2017 where we achieve state-
of-the-art performance. Qualitative results are presented
for better understanding of our model. Code is available at
this https URL.

1. Introduction
Fine-grained visual classification aims at classifying

sub-classes of a given object category, e.g., subcategories
of birds [42, 40], cars [27], aircrafts [32]. It has long been
considered as a very challenging task due to the small inter-
class variations and large intra-class variations along with
the deficiency of annotated data, especially for the long-
tailed classes. Benefiting from the progress of deep neu-

Figure 1: An overview of performance comparison of ViT
and TransFG with state-of-the-art methods with CNN back-
bones on five datasets.

ral networks [28, 35, 19], the performance of FGVC ob-
tain a steady progress in recent years. To avoid labor-
intensive parts annotation, the community currently focuses
on weakly-supervised FGVC with only image-level labels.
Methods now can be roughly classified into two categories,
i.e., localization methods and feature-encoding methods.
Compared to feature-encoding methods, the localization
methods have the advantages that they explicitly capture
the subtle differences among different sub-classes which is
more interpretable and usually yields better results.

Early works in localization methods rely on the annota-
tions of parts to locate discriminative regions while recent
works [16, 29, 10, 54, 49] mainly adopt region proposal net-
works (RPN) to propose bounding boxes which contain the
discriminative regions. After obtaining the selected image
regions, they are resized into predefined size and forwarded
through the backbone network again to acquire informa-
tive local features. A typical strategy is to use these lo-
cal features for classification individually and adopt a rank
loss [5] to maintain the consistency between the quality of
bounding boxes and their final probability output. How-
ever, this mechanism ignores the relation between selected
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regions thus inevitably encourages the RPN to propose large
bounding boxes that contain most parts of the objects in
order to obtain correct classification results. Sometimes
these bounding boxes can even contain large areas of back-
grounds and lead to confusion. Besides, the RPN module
with different optimizing goals compared to the backbone
network makes the network harder to train and the re-use of
backbone complicates the overall algorithm pipeline.

Recently, vision transformer [11] achieved huge success
in traditional classification task which shows that applying
a pure transformer directly to a sequence of image patches
with its innate attention mechanism can capture the impor-
tant regions in images thus facilitate the classification. A
series of extended work on downstream tasks such as ob-
ject detection [3], semantic segmentation [55, 46, 4] con-
firmed the strong ability for vision transformer to capture
both global and local features.

In this paper, we present the first study which explores
the potential of vision transformers in the context of fine-
grained visual classification. We find that directly applying
ViT on FGVC already produces satisfactory results while a
lot of adaptations according to the characteristics of FGVC
can be applied to further boost the performance. To this
end, we propose TransFG, a simple yet effective framework
based on ViT. To be specific, by leveraging the innate multi-
head self-attention mechanism, we propose a part selection
module to compute the discriminative regions and remove
redundant information. We then concatenate the selected
part tokens along with the global classification token as in-
put sequence to the last transformer layer. To further en-
large the distance between feature representations of sam-
ples from different categories and decrease that of samples
from the same categories and decrease that of samples from
same categories, we introduce a contrastive loss that further
boosts performance.

We evaluate our model extensively on five popular fine-
grained visual classification benchmarks (CUB-200-2011,
Stanford Cars, Stanford Dogs, NABirds, iNat2017). An
overview of the performance comparison can be seen in
Fig 1 where our TransFG outperforms existing SOTA CNN
methods with different backbones on most datasets. In sum-
mary, we make several important contributions in this work:

1. To the best of our knowledge, we are the first to verify
the effectiveness of vision transformer on fine-grained
visual classification which offers an alternative to the
dominating CNN backbone with RPN model design.

2. We introduce TransFG, a novel neural architecture for
fine-grained visual classification that naturally focuses
on the most discriminative regions of the objects and
achieve SOTA performance on several standard bench-
marks.

3. Visualization results are presented which illustrate the
ability of our TransFG to accurately capture discrimi-
native image regions and help us to better understand
how it makes correct predictions.

2. Related Work
In this section, we briefly review existing works on fine-

grained visual classification and transformer.

2.1. Fine-Grained Visual Classification

Many works have been done to tackle the problem
of fine-grained visual classification and they can roughly
be classified into two categories: localization methods
[16, 29, 10, 54, 49, 47] and feature-encoding methods
[50, 53, 15, 56, 30]. The former focuses on training a
detection network to localize discriminative part regions
and reuse them to perform classification. The latter targets
at learning more informative features by either computing
higher-order information or finding the relationships among
contrastive pairs.

2.1.1 Localization FGVC methods

Previously, some works [2, 45] tried to exploit the part an-
notations to supervise the learning procedure of the local-
ization process. However, since such annotations are ex-
pensive and usually unavailable, weakly-supervised parts
proposal with only image-level labels draw more attentions
nowadays. He et al. [21] proposed a sophisticated rein-
forcement learning procedure to estimate how to select the
discriminative image regions and the number of them. Ge et
al. [16] exploited Mask R-CNN and CRF-based segmenta-
tion alternatively to extract object instances and discrimina-
tive regions. Yang [47] proposed a re-ranking strategy to re-
rank the global classification results based on the database
constructed with region features. However, these meth-
ods all need a special designed module to propose poten-
tial regions and these selected regions need to be forwarded
through the backbone again for final classification. Besides,
some of the proposed regions often contain the whole object
which are not discriminative enough.

2.1.2 Feature-encoding methods

The other branch of methods focus on enriching the feature
representations to obtain better classification results. Yu et
al. [50] proposed a hierarchical framework to do cross-
layer bilinear pooling. Zheng et al. [53] adopted the idea
of group convolution to first split channels into different
groups by their semantic meanings and then do the bilinear
pooling within each group without changing the dimension
thus it can be integrated into any existed backbones directly.
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Figure 2: The framework of our proposed TransFG. Images are split into small patches (a non-overlapping split is shown
here) and projected into the embedding space. The input to the Transformer Encoder consists of patch embeddings along
with learnable position embeddings. Before the last Transformer Layer, a Part Selection Module (PSM) is applied to select
tokens that corresponds to the discriminative image patches and only use these selected tokens as input. Cross-entropy loss
and contrastive loss on the final classification token contribute to the training of TransFG. Best viewed in color.

Zhuang et al. [56] proposed to construct contrastive input
batches and compute the cues between them to force the
features contain such discriminative information. However,
these methods are usually not interpretable such one does
not know what makes the model distinguish sub-categories
with subtle differences.

2.2. Transformer

Transformer and self-attention models have greatly fa-
cilitated research in natural language processing and ma-
chine translation [8, 9, 41, 48]. Inspired by this, many re-
cent studies try to apply transformers in computer vision
area. Initially, transformer is used to handle sequential fea-
tures extracted by CNN backbone for the videos. Girdhar et
al. [18] exploited a variant of transformer to aggregate con-
textual cues related to a specific person in a video. Later,
transformer models are further extended to other popular
computer vision tasks such as object detection [3], segmen-
tation [46, 4, 51], object tracking [36]. Most recently, pure
transformer models are becoming more and more popular.
ViT [11] is the first work to show that applying a pure trans-
former directly to a sequence of image patches can yield

state-of-the-art performance on image classification. Based
on that, Zheng et al. [55] proposed SETR to exploit ViT as
the encoder for segmentation. He et al. [20] proposed Tran-
sReID which embedded side information into transformer
along with the JPM to boost the performance on object re-
identification. In this work, we extend ViT to fine-grained
visual classification and show its effectiveness.

3. Method

We briefly review the framework of vision transformer
and show how to do some preprocessing steps to extend it
into fine-grained recognition in Section 3.1. Then, the over-
all framework of TransFG will be elaborated in Section 3.2

3.1. Vision transformer as feature extractor

Image Sequentialization. Following ViT, we first pre-
process the input image into a sequence of flattened patches
xp. However, the original split method cut the images into
non-overlapping patches, which harms the local neighbor-
ing structures especially when discriminative regions are
split. To alleviate this problem, we propose to generate



overlapping patches with sliding window. To be specific,
we denote the input image with resolution H ∗W , the size
of image patch as P and the step size of sliding window as
S. Thus the input images will be split into N patches where

N = NH ∗NW = bH − P + S

S
c ∗ bW − P + S

S
c (1)

In this way, two adjacent patches share an overlapping area
of size (P − S) ∗ P which helps to preserve better local
region information. Typically speaking, the smaller the step
S is, the better the performance will be. But decreasing S
will at the same time enlarge the computational cost, so a
trade-off needs to be made here.

Patch Embedding. We map the vectorized patches xp
into a latent D-dimensional embedding space using a train-
able linear projection. A learnable position embedding is
added to the patch embeddings to retain positional informa-
tion as follows:

z0 = [x1pE, x
2
pE, · · · , xNp E] +Epos (2)

whereN is the number of image patches, E ∈ R(P 2·C)∗D is
the patch embedding projection, and Epos ∈ RN∗D denotes
the position embedding.

The Transformer encoder [41] contains L layers of
multihead self-attention (MSA) and multi-layer perceptron
(MLP) blocks. Thus the output of the l-th layer can be writ-
ten as follows:

z
′

l =MSA(LN(zl−1)) + zl−1 l ∈ 1, 2, · · · , L (3)

zl =MLP (LN(z
′

l)) + z
′

l l ∈ 1, 2, · · · , L (4)

where LN(·) denotes the layer normalization operation and
zl is the encoded image representation. ViT exploits the
first token of the last encoder layer z0L as the representation
of the global feature and forward it to a classifier head to
obtain the final classification results without considering the
potential information stored in the rest tokens.

3.2. TransFG Architecture

While our experiments in Section 4 show that the pure
Vision Transformer can be directly applied into fine-grained
visual classification and achieve impressive results. It does
not well capture the local information required for FGVC.
To this end, we propose the Part Selection Module (PSM)
and apply contrastive feature learning to enlarge the dis-
tance of representations between similar sub-categories.
The framework of our proposed TransFG is illustrated in
Fig 2.

3.2.1 Part Selection Module

One of the most important problems in fine-grained visual
classification is to accurately locate the discriminative re-
gions that account for subtle differences between similar

Figure 3: A confusing pair of instances from the CUB-200-
2011 dataset. Model needs to has the ability to capture the
subtle differences in order to classify them correctly. The
second column shows the overall attention maps and two
selected tokens of our TransFG method. Best viewed in
color.

sub-categories. Take a confusing pair of images from the
CUB-200-2011 dataset as shown in Fig 3 for example. The
model needs to have the ability to capture the very small
differences, i.e., the color of eyes and throat in order to dis-
tinguish these two bird species. Region proposal networks
and weakly-supervised segmentation strategies are widely
introduced to tackle this problem in the traditional CNN-
based methods.

Vision Transformer model is perfectly suited here with
its innate multi-head attention mechanism. To fully exploit
the attention information, we change the input to the last
Transformer Layer. Suppose the model has K self-attention
heads and the hidden features input to the last layer are de-
noted as zL−1 = [z0L−1; z

1
L−1, z

2
L−1, · · · , zNL−1]. The atten-

tion weights of the previous layers can be written as follows:

al = [a0l , a
1
l , a

2
l , · · · , aKl ] l ∈ 1, 2, · · · , L− 1 (5)

ail = [ai0l ; ai1l , a
i2
l , · · · , a

iN
l ] i ∈ 0, 1, · · · ,K (6)

Previous works [34, 1] suggested that the raw attention
weights do not necessarily correspond to the relative im-
portance of input tokens especially for higher layers of a
model, due to lack of token identifiability of the embed-
dings. To this end, we propose to integrate attention weights
of all previous layers. To be specific, we recursively apply a
matrix multiplication to the raw attention weights in all the
layers as

afinal =

L−1∏
l=0

al (7)



As afinal captures how information propagates from the in-
put layer to the embeddings in higher layers, it serves as a
better choice for selecting discriminative regions compared
to the single layer raw attention weights aL−1. We then
choose the index of the maximum value A1, A2, · · · , AK

with respect to the K different attention heads in afinal.
These positions are used as index for our model to extract
the corresponding tokens in zL−1. Finally, we concatenate
the selected tokens along with the classification token as the
input sequence which is denoted as:

zlocal = [z0L−1; z
A1

L−1, z
A2

L−1, · · · , z
AK

L−1] (8)

By replacing the original entire input sequence with tokens
corresponding to informative regions and concatenate the
classification token as input to the last Transformer Layer,
we not only keep the global information but also force the
last Transformer Layer to focus on the subtle differences
between different sub-categories while abandoning less dis-
criminative regions such as background or common features
among a super class.

3.2.2 Contrastive feature learning

Following ViT, we still adopt the first token zi of the PSM
module for classification. A simple cross-entropy loss is not
enough to fully supervise the learning of features since the
differences between sub-categories might be very small. To
this end, we adopt contrastive loss Lcon which minimizes
the similarity of classification tokens corresponding to dif-
ferent labels and maximizes the similarity of classification
tokens of samples with the same label y. To prevent the loss
being dominated by easy negatives (different class samples
with little similarity), a constant margin α is introduced that
only negative pairs with similarity larger than α contribute
to the loss Lcon. Formally, the contrastive loss over a batch
of size N is denoted as:

Lcon =
1

N2

N∑
i

[

N∑
j:yi=yj

(1− Sim(zi, zj)+

N∑
j:yi 6=yj

max((Sim(zi, zj)− α), 0)]

(9)

where zi and zj are pre-processed with l2 normalization and
Sim(zi, zj) is the cosine similarity of zi and zj .

In summary, our model is trained with the sum of cross-
entropy lossLcross and contrastiveLcon together which can
be expressed as:

L = Lcross(y, y
′) + Lcon(z) (10)

where Lcross(y, y
′) is the cross-entropy loss between the

predicted label y′ and the ground-truth label y.

4. Experiments
In this section, we first introduce the detailed setup in-

cluding datasets and training hyper-parameters in Section
4.1. Quantitative analysis is given in Section 4.2 follow by
ablation studies in Section 4.3. We further give qualitative
analysis and visualization results in Section 4.4.

4.1. Experiments Setup

Datasets. We evaluate our proposed TransFG on five
widely used fine-grained benchmarks, i.e., CUB-200-2011
[42], Stanford Cars [27], Stanford Dogs [25], NABirds [40]
and iNat2017 [22]. The detailed statistics such as category
numbers and data splits are summarized below

Table 1: Statistics of fine-grained datasets used in this paper.

Datasets Category Training Testing
CUB-Birds 200 5994 5794

Stanford Dogs 120 12000 8580
Stanford Cars 196 8144 8041

NABirds 555 23929 24633
iNat2017 5089 579184 95986

Implementation details. Unless stated otherwise, we
implement TransFG as follows. First, we resize input im-
ages to 448 ∗ 448 except 304 ∗ 304 on iNat2017 for fair
comparison (random cropping for training and center crop-
ping for testing). We split image to patches of size 16 and
the step size of sliding window is set to be 12. Thus the
H,W,P, S in Eq 1 is 448, 448, 16, 12 respectively. The
margin α in Eq 9 is set to be 0.4. Random horizontal flip-
ping and AutoAugment [7] are adopted for data augmenta-
tion. We load intermediate weights from official ViT-B 16
model pretrained on ImageNet21k. The batch size is set to
16. SGD optimizer is employed with a momentum of 0.9.
The learning rate is initialized as 0.03 except 0.003 for Stan-
ford Dogs dataset and 0.01 for iNat2017 dataset. We adopt
cosine annealing as the scheduler of optimizer.

All the experiments are performed with four Nvidia
Tesla V100 GPUs using the PyTorch toolbox and APEX
with FP16 training.

4.2. Quantitative Analysis

We compare our proposed method TransFG with state-
of-the-art works on above mentioned fine-grained datasets.
The experiment results on CUB-200-2011 and Stanford
Cars are shown in Table 2. From the results, we find that our
method outperforms all previous methods on CUB dataset
and achieve competitive performance on Stanford Cars.

To be specific, the third column of Table 2 shows the
comparison results on CUB-200-2011. Compared to the
best result StackedLSTM [17] up to now, our TransFG
achieves a 1.3% improvement on Top-1 Accuracy metric



Table 2: Comparison of different methods on CUB-200-
2011, Stanford Cars.

Method Backbone CUB Cars
ResNet-50 [19] ResNet-50 84.5 -
RA-CNN [14] VGG-19 85.3 92.5
GP-256 [44] VGG-16 85.8 92.8
MaxEnt [13] DenseNet-161 86.6 93.0

DFL-CNN [43] ResNet-50 87.4 93.1
NTS-Net [49] ResNet-50 87.5 93.9
Cross-X [30] ResNet-50 87.7 94.6

DCL [6] ResNet-50 87.8 94.5
CIN [15] ResNet-101 88.1 94.5

DBTNet [53] ResNet-101 88.1 94.5
ACNet [24] ResNet-50 88.1 94.6

S3N [10] ResNet-50 88.5 94.7
FDL [29] DenseNet-161 89.1 94.2
PMG [12] ResNet-50 89.6 95.1

API-Net [56] DenseNet-161 90.0 95.3
StackedLSTM [17] GoogleNet 90.4 -

DeiT-B [38] DeiT-B - 93.9
ViT [11] ViT-B 16 90.3 93.7
TransFG ViT-B 16 91.7 94.8

and 1.4% improvement compared to our base framework
ViT [11]. NTS-Net [49] exploits ranking loss to maintain
a consistency for learning region features which ignored
the global relationship. Multiple ResNet-50 are adopted as
multiple branches in [10] which greatly increases the com-
plexity. It is also worth noting that StackLSTM is a very
messy multi-stage training model which hampers the avail-
ability in practical use, while our TransFG maintains the
simplicity of both framework and training strategy.

The fourth column of Table 2 shows the results on Stan-
ford Cars. Our method outperforms most existing meth-
ods while performs worse than PMG [12] and API-Net
[56] with small margin. We argue that the reason might
be the images of Stanford Cars dataset have much sim-
pler and clearer backgrounds than others thus it requires
less work on locating discriminative regions for classifying
sub-categories. We can observe that most recent methods
achieve quite similar results on this dataset. However, even
with this property, our TransFG consistently gets 1.1% im-
provement compared to the standard ViT model.

The results of experiments on Stanford Dogs are shown
in Table 3. Stanford Dogs is a more challenging dataset
compared to Stanford Cars with its the more subtle dif-
ferences between certain species and the large variances
of samples from the same category. Only a few methods
have tested on this dataset and our TransFG outperforms
all of them. API-Net [56] learns to capture the subtle dif-
ferences by elaborately constructing batches of data and
learning the mutual feature vectors and residuals of them.
While ViT [11] outperforms other methods by a large mar-

Table 3: Comparison of different methods on Stanford
Dogs.

Method Backbone Dogs
MaxEnt [13] DenseNet-161 83.6

FDL [29] DenseNet-161 84.9
RA-CNN [14] VGG-19 87.3

SEF [31] ResNet-50 88.8
Cross-X [30] ResNet-50 88.9
API-Net [56] ResNet-101 90.3

ViT [11] ViT-B 16 91.7
TransFG ViT-B 16 92.3

Table 4: Comparison of different methods on NABirds.

Method Backbone NABirds
MaxEnt [13] DenseNet-161 83.0
Cross-X [30] ResNet-50 86.4
API-Net [56] DenseNet-161 88.1
CS-Parts [26] ResNet-50 88.5

MGE-CNN [52] ResNet-50 88.6
FixSENet-154 [39] SENet-154 89.2

ViT [11] ViT-B 16 89.9
TransFG ViT-B 16 90.8

Table 5: Comparison of different methods on iNat2017.

Method Backbone iNat2017
ResNet152 [19] ResNet152 59.0

SSN [33] ResNet101 65.2
Huang et al. [23] ResNet101 66.8

IncResNetV2 [37] IncResNetV2 67.3
TASN [54] ResNet101 68.2
ViT [11] ViT-B 16 68.7
TransFG ViT-B 16 71.7

gin, our TransFG achieves 92.3% accuracy which outper-
forms SOTA by 2.0% with its discriminative part selection
and contrastive loss supervision.

NABirds is a much larger birds dataset not only from the
side of images numbers but also with 355 more categories
which significantly makes the fine-grained visual classifica-
tion task more challenging. We show our results on it in
Table 4. We observe that most methods achieve good re-
sults by either exploiting multiple backbones for different
branches or adopting quite deep CNN structures to extract
better features. While the pure ViT [11] can directly achieve
89.9% accuracy, our TransFG constantly gets 0.9% perfor-
mance gain compared to ViT and reaches 90.8% accuracy
which outperforms SOTA by 1.6%.

iNat2017 is a large-scale dataset for fine-grained species
recognition. Most previous methods do not report results on
iNat2017 because of the computational complexity of the
multi-crop, multi-scale and multi-stage optimization. With
the simplicity of our model pipeline, we are able to scale



Table 6: Ablation study on split way of image patches on
CUB-200-2011 dataset.

Method Patch Split Accuracy (%) Training Time (h)
ViT Non-Overlap 90.3 1.30
ViT Overlap 90.5 3.38

TransFG Non-Overlap 91.5 1.98
TransFG Overlap 91.7 5.38

Table 7: Ablation study on Part Selection Module (PSM) on
CUB-200-2011 dataset.

Method Accuracy (%)
ViT 90.3

TransFG 91.0

TransFG well to big datasets and evaluate the performance
which is shown in Table 5. This dataset is very challeng-
ing for mining meaningful object parts and the background
is very complicated as well. We find that Vision Trans-
former structure outperforms ResNet structure a lot in these
large challenging datasets. ViT outperformes ResNet152 by
nearly 10% and similar phenomenon can also be observed
in iNat2018 and iNat2019. Our TransFG is the only method
to achieve above 70% accuracy with input size of 304 and
outperforms SOTA with a large margin of 3.5%.

4.3. Ablation Study

We conduct ablation studies on our TransFG pipeline to
analyze how its variants affect the fine-grained visual clas-
sification result. All ablation studies are done on CUB-200-
2011 dataset while the same phenomenon can be observed
on other datasets as well. We evaluate the influence of the
following designs: overlap patches, part selection module,
contrastive loss and the results are analyzed in details below.

Influence of image patch split method. We investigate
the influence of our overlapping patch split method through
experiments with standard non-overlapping patch split. As
shown in Table 6, both on the pure Vision Transformer and
our improved TransFG framework, the overlapping split
method bring consistently improvement, i.e., 0.2% for both
frameworks. The additional computational cost introduced
by this is also affordable as shown in the fourth column.

Influence of Part Selection Module. As shown in Table
7, by applying the Part Selection Module (PSM) to select
discriminative part tokens as the input for the last Trans-
former layer, the performance of the model improves from
90.3% to 91.0%. We argue that this is because in this way,
we sample the most discriminative tokens as input which
explicitly throws away some useless tokens and force the
network to learn from the important parts.

Influence of contrastive loss. The comparisons of the
performance with and without contrastive loss for both ViT

Table 8: Ablation study on contrastive loss on CUB-200-
2011 dataset.

Method Contrastive Loss Acc (%)
ViT 90.3
ViT X 90.7

TransFG 91.0
TransFG X 91.5

Table 9: Ablation study on value of margin α on CUB-200-
2011 dataset.

Method Value of α Accuracy (%)
TransFG 0 91.1
TransFG 0.2 91.4
TransFG 0.4 91.7
TransFG 0.6 91.5

and TransFG frameworks are shown in Table 8 to verify the
effectiveness of it. We observe that with contrastive loss,
the model obtains a big performance gain. Quantitatively,
it increases the accuracy from 90.3% to 90.7% for ViT and
91.0% to 91.5% for TransFG. We argue that this is because
contrastive loss can effectively enlarge the distance of repre-
sentations between similar sub-categories and decrease that
between the same categories which can be clearly seen in
the comparison of confusion matrix in Fig 4.

Figure 4: Illustration of contrastive loss. Confusion matri-
ces without and with contrastive loss of a batch with four
classes where each contains four samples are shown. The
metric of confusion matrix is cosine similarity. Best viewed
in color.

Influence of margin α. The results of different setting
of the margin α in Eq 9 is shown in Table 9. We find that a
small value of α will lead the training signals dominated by
easy negatives thus decrease the performance while a high
value of α hinder the model to learn sufficient information
for increasing the distances of hard negatives. Empirically,
we find 0.4 to be the best value of α in our experiments.



Figure 5: Visualization results of TransFG on CUB-200-2011, Stanford Dogs, Stanford Cars and NABirds datasets. Two
kinds of visualization are given, where the first and the third row show the selected Top-4 token positions while the second
and fourth rows show the overall global attention maps. Best viewed in color.

4.4. Qualitative Analysis

We show the visualization results of proposed TransFG
on the four benchmarks in Fig 5. We randomly sample three
images from each dataset. Two kinds of visualizations are
presented. The first and the third row of Fig 5 illustrated the
selected tokens positions. For better visualization results,
we only draw the Top-4 image patches (ranked by the acti-
vation value) and enlarge the square of the patches by two
times while keep the center positions unchanged. The sec-
ond and fourth rows show the overall attention map of the
whole image where we average the weights of all attention
heads to obtain a single attention map. The lighter a region
is, the more important it is. From the figure, we can clearly
see that our TransFG successfully captures the most impor-
tant regions for an object, i.e., head, wings, tail for birds;
ears, eyes, legs for dogs; lights, doors for cars. At the same
time, our overall attention map maps the entire object pre-
cisely even in complex backgrounds. See examples from
NABirds dataset where birds are sitting on twigs. The bird
parts are lighted while the occluder twigs are ignored.

5. Conclusion

In this work, we propose a novel fine-grained visual clas-
sification framework TransFG and achieve state-of-the-art
results on four common fine-grained benchmarks. We ex-
ploit self-attention mechanism to capture the most discrim-
inative regions. Compared to bounding boxes produced by
other methods, our selected image patches are much smaller
thus becoming more meaningful by showing what regions
really contribute to the fine-grained classification. The ef-
fectiveness of such small image patches also comes from
the Transformer Layer to handle the inner relationships be-
tween these regions instead of relying on each of them to
produce results separately. Contrastive feature learning is
introduced to increase the discriminative ability of the clas-
sification tokens. Qualitative visualizations further prove
the effectiveness and the interpretability of our method.

With the promising results achieved by TransFG, we be-
lieve that the transformer-based models have great potential
on fine-grained tasks and our TransFG could be a starting
point for future works.
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