import torch.distributed as dist def get_rank(): if not dist.is_available(): return 0 if not dist.is_initialized(): return 0 return dist.get_rank() def get_world_size(): if not dist.is_available(): return 1 if not dist.is_initialized(): return 1 return dist.get_world_size() def is_main_process(): return get_rank() == 0 def format_step(step): if isinstance(step, str): return step s = "" if len(step) > 0: s += "Training Epoch: {} ".format(step[0]) if len(step) > 1: s += "Training Iteration: {} ".format(step[1]) if len(step) > 2: s += "Validation Iteration: {} ".format(step[2]) return s