# coding=utf-8 import os import torch import numpy as np from PIL import Image from torchvision import transforms import argparse from models.modeling import VisionTransformer, CONFIGS import time import lightrise #模型测试单张图片 parser = argparse.ArgumentParser() parser.add_argument("--dataset", choices=["emptyJudge5"], default="emptyJudge5", help="Which dataset.") parser.add_argument("--img_size", default=600, type=int, help="Resolution size") parser.add_argument('--split', type=str, default='overlap', help="Split method") # non-overlap parser.add_argument('--slide_step', type=int, default=12, help="Slide step for overlap split") parser.add_argument('--smoothing_value', type=float, default=0.0, help="Label smoothing value\n") parser.add_argument("--pretrained_model", type=str, default="../module/ieemoo-ai-isempty/model/new/ieemooempty_vit_checkpoint.pth", help="load pretrained model") #parser.add_argument("--pretrained_model", type=str, default="output/ieemooempty_vit_checkpoint.pth", help="load pretrained model") #使用自定义VIT args = parser.parse_args() #args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") args.device = torch.device("cpu") args.nprocs = torch.cuda.device_count() # 准备模型 config = CONFIGS["ViT-B_16"] config.split = args.split config.slide_step = args.slide_step num_classes = 5 cls_dict = {0: "noemp", 1: "yesemp", 2: "hard", 3: "fly", 4: "stack"} model = None #model = VisionTransformer(config, args.img_size, zero_head=True, num_classes=num_classes, smoothing_value=args.smoothing_value) if args.pretrained_model is not None: model = torch.load(args.pretrained_model,map_location=torch.device('cpu')) #自己预训练模型 model.to(args.device) model.eval() test_transform = transforms.Compose([transforms.Resize((600, 600), Image.BILINEAR), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) #自定义Vit模型 # test_transform = transforms.Compose([transforms.Resize((320, 320), Image.BILINEAR), # transforms.ToTensor(), # transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) #img = Image.open("img.jpg") img = Image.open("light.jpg") x = test_transform(img) startime = time.process_time() part_logits = model(x.unsqueeze(0).to(args.device)) probs = torch.nn.Softmax(dim=-1)(part_logits) top5 = torch.argsort(probs, dim=-1, descending=True) print("Prediction Label\n") for idx in top5[0, :5]: print(f'{probs[0, idx.item()]:.5f} : {cls_dict[idx.item()]}', end='\n') clas_ids = top5[0][0] clas_ids = 0 if 0==int(clas_ids) or 2 == int(clas_ids) or 3 == int(clas_ids) else 1 print("cur_img result: class id: %d, score: %0.3f" % (clas_ids, probs[0, clas_ids].item())) result={} result["success"] = "true" result["rst_cls"] = str(clas_ids) riseresult = lightrise.riseempty(Image.open("light.jpg")) if(int(result["rst_cls"])==1): if(int(riseresult["rst_cls"])==1): result = {} result["success"] = "true" result["rst_cls"] = 1 else: result = {} result["success"] = "true" result["rst_cls"] = 0 print(result) endtime = time.process_time() print("Time cost:"+ str(endtime - startime)) #评估一张图片耗时2.8秒