update
This commit is contained in:
136
ieemoo-ai-isempty.py
Normal file
136
ieemoo-ai-isempty.py
Normal file
@ -0,0 +1,136 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
from flask import request, Flask
|
||||
import numpy as np
|
||||
import json
|
||||
import time
|
||||
import cv2, base64
|
||||
import argparse
|
||||
import sys, os
|
||||
import torch
|
||||
from PIL import Image
|
||||
from torchvision import transforms
|
||||
from models.modeling import VisionTransformer, CONFIGS
|
||||
sys.path.insert(0, ".")
|
||||
|
||||
|
||||
app = Flask(__name__)
|
||||
app.use_reloader=False
|
||||
|
||||
|
||||
def parse_args(model_file="ckpts/emptyjudge5_checkpoint.bin"):
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--img_size", default=448, type=int, help="Resolution size")
|
||||
parser.add_argument('--split', type=str, default='overlap', help="Split method")
|
||||
parser.add_argument('--slide_step', type=int, default=12, help="Slide step for overlap split")
|
||||
parser.add_argument('--smoothing_value', type=float, default=0.0, help="Label smoothing value")
|
||||
parser.add_argument("--pretrained_model", type=str, default=model_file, help="load pretrained model")
|
||||
opt, unknown = parser.parse_known_args()
|
||||
return opt
|
||||
|
||||
|
||||
class Predictor(object):
|
||||
def __init__(self, args):
|
||||
self.args = args
|
||||
self.args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
print(self.args.device)
|
||||
self.args.nprocs = torch.cuda.device_count()
|
||||
self.cls_dict = {}
|
||||
self.num_classes = 0
|
||||
self.model = None
|
||||
self.prepare_model()
|
||||
self.test_transform = transforms.Compose([transforms.Resize((448, 448), Image.BILINEAR),
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
|
||||
|
||||
def prepare_model(self):
|
||||
config = CONFIGS["ViT-B_16"]
|
||||
config.split = self.args.split
|
||||
config.slide_step = self.args.slide_step
|
||||
model_name = os.path.basename(self.args.pretrained_model).replace("_checkpoint.bin", "")
|
||||
print("use model_name: ", model_name)
|
||||
self.num_classes = 5
|
||||
self.cls_dict = {0: "noemp", 1: "yesemp", 2: "hard", 3: "fly", 4: "stack"}
|
||||
self.model = VisionTransformer(config, self.args.img_size, zero_head=True, num_classes=self.num_classes, smoothing_value=self.args.smoothing_value)
|
||||
if self.args.pretrained_model is not None:
|
||||
if not torch.cuda.is_available():
|
||||
pretrained_model = torch.load(self.args.pretrained_model, map_location=torch.device('cpu'))['model']
|
||||
self.model.load_state_dict(pretrained_model)
|
||||
else:
|
||||
pretrained_model = torch.load(self.args.pretrained_model)['model']
|
||||
self.model.load_state_dict(pretrained_model)
|
||||
self.model.eval()
|
||||
self.model.to(self.args.device)
|
||||
#self.model.eval()
|
||||
|
||||
def normal_predict(self, img_data, result):
|
||||
# img = Image.open(img_path)
|
||||
if img_data is None:
|
||||
print('error, img data is None')
|
||||
return result
|
||||
else:
|
||||
with torch.no_grad():
|
||||
x = self.test_transform(img_data)
|
||||
if torch.cuda.is_available():
|
||||
x = x.cuda()
|
||||
part_logits = self.model(x.unsqueeze(0))
|
||||
probs = torch.nn.Softmax(dim=-1)(part_logits)
|
||||
topN = torch.argsort(probs, dim=-1, descending=True).tolist()
|
||||
clas_ids = topN[0][0]
|
||||
clas_ids = 0 if 0==int(clas_ids) or 2 == int(clas_ids) or 3 == int(clas_ids) else 1
|
||||
print("cur_img result: class id: %d, score: %0.3f" % (clas_ids, probs[0, clas_ids].item()))
|
||||
result["success"] = "true"
|
||||
result["rst_cls"] = str(clas_ids)
|
||||
return result
|
||||
|
||||
|
||||
model_file ="/data/ieemoo/emptypredict_pfc_FG/ckpts/emptyjudge5_checkpoint.bin"
|
||||
args = parse_args(model_file)
|
||||
predictor = Predictor(args)
|
||||
|
||||
|
||||
@app.route("/isempty", methods=['POST'])
|
||||
def get_isempty():
|
||||
start = time.time()
|
||||
print('--------------------EmptyPredict-----------------')
|
||||
data = request.get_data()
|
||||
ip = request.remote_addr
|
||||
print('------ ip = %s ------' % ip)
|
||||
|
||||
json_data = json.loads(data.decode("utf-8"))
|
||||
getdateend = time.time()
|
||||
print('get date use time: {0:.2f}s'.format(getdateend - start))
|
||||
|
||||
pic = json_data.get("pic")
|
||||
result = {"success": "false",
|
||||
"rst_cls": '-1',
|
||||
}
|
||||
try:
|
||||
imgdata = base64.b64decode(pic)
|
||||
imgdata_np = np.frombuffer(imgdata, dtype='uint8')
|
||||
img_src = cv2.imdecode(imgdata_np, cv2.IMREAD_COLOR)
|
||||
img_data = Image.fromarray(np.uint8(img_src))
|
||||
result = predictor.normal_predict(img_data, result) # 1==empty, 0==nonEmpty
|
||||
except:
|
||||
return repr(result)
|
||||
|
||||
return repr(result)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
app.run()
|
||||
# app.run("0.0.0.0", port=8083)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user