update prepara_data.py.
This commit is contained in:
154
prepara_data.py
154
prepara_data.py
@ -1,28 +1,38 @@
|
||||
#encoding: utf-8
|
||||
import os
|
||||
import cv2
|
||||
import numpy as np
|
||||
import subprocess
|
||||
import random
|
||||
|
||||
|
||||
#生成数据集
|
||||
|
||||
|
||||
# ----------- 改写名称 --------------
|
||||
# index = 0
|
||||
# src_dir = "/data/fineGrained/emptyJudge5"
|
||||
# dst_dir = src_dir + "_new"
|
||||
# os.makedirs(dst_dir, exist_ok=True)
|
||||
# src_dir = "../emptyJudge2/images/"
|
||||
# dst_dir = src_dir
|
||||
# os.remove('../emptyJudge2/image_class_labels.txt')
|
||||
# os.remove('../emptyJudge2/images.txt')
|
||||
# os.remove('../emptyJudge2/train_test_split.txt')
|
||||
# if(os.path.exists(dst_dir)):
|
||||
# pass
|
||||
# else:
|
||||
# os.makedirs(dst_dir)
|
||||
|
||||
# for sub in os.listdir(src_dir):
|
||||
# sub_path = os.path.join(src_dir, sub)
|
||||
# print(sub_path)
|
||||
# sub_path_dst = os.path.join(dst_dir, sub)
|
||||
# os.makedirs(sub_path_dst, exist_ok=True)
|
||||
# for cur_f in os.listdir(sub_path):
|
||||
# cur_img = os.path.join(sub_path, cur_f)
|
||||
# cur_img_dst = os.path.join(sub_path_dst, "a%05d.jpg" % index)
|
||||
# cur_img_dst = os.path.join(sub_path_dst, "image%04d.jpg" % index)
|
||||
# index += 1
|
||||
# os.system("mv %s %s" % (cur_img, cur_img_dst))
|
||||
|
||||
|
||||
# ----------- 删除过小图像 --------------
|
||||
# src_dir = "/data/fineGrained/emptyJudge5"
|
||||
# src_dir = "../emptyJudge2/images/"
|
||||
# for sub in os.listdir(src_dir):
|
||||
# sub_path = os.path.join(src_dir, sub)
|
||||
# for cur_f in os.listdir(sub_path):
|
||||
@ -37,83 +47,59 @@ import random
|
||||
|
||||
|
||||
# ----------- 获取有效图片并写images.txt --------------
|
||||
# src_dir = "/data/fineGrained/emptyJudge4/images"
|
||||
# src_dict = {"noemp":"0", "yesemp":"1", "hard": "2", "stack": "3"}
|
||||
# all_dict = {"yesemp":[], "noemp":[], "hard": [], "stack": []}
|
||||
# for sub, value in src_dict.items():
|
||||
# sub_path = os.path.join(src_dir, sub)
|
||||
# for cur_f in os.listdir(sub_path):
|
||||
# all_dict[sub].append(os.path.join(sub, cur_f))
|
||||
#
|
||||
# yesnum = len(all_dict["yesemp"])
|
||||
# nonum = len(all_dict["noemp"])
|
||||
# hardnum = len(all_dict["hard"])
|
||||
# stacknum = len(all_dict["stack"])
|
||||
# thnum = min(yesnum, nonum, hardnum, stacknum)
|
||||
# images_txt = src_dir + ".txt"
|
||||
# index = 1
|
||||
#
|
||||
# def write_images(cur_list, thnum, fw, index):
|
||||
# for feat_path in random.sample(cur_list, thnum):
|
||||
# fw.write(str(index) + " " + feat_path + "\n")
|
||||
# index += 1
|
||||
# return index
|
||||
#
|
||||
# with open(images_txt, "w") as fw:
|
||||
# index = write_images(all_dict["noemp"], thnum, fw, index)
|
||||
# index = write_images(all_dict["yesemp"], thnum, fw, index)
|
||||
# index = write_images(all_dict["hard"], thnum, fw, index)
|
||||
# index = write_images(all_dict["stack"], thnum, fw, index)
|
||||
src_dir = "../emptyJudge2/images/"
|
||||
src_dict = {"noempty":"0", "empty":"1"}
|
||||
all_dict = {"noempty":[], "empty":[]}
|
||||
for sub, value in src_dict.items():
|
||||
sub_path = os.path.join(src_dir, sub)
|
||||
for cur_f in os.listdir(sub_path):
|
||||
all_dict[sub].append(os.path.join(sub, cur_f))
|
||||
|
||||
yesnum = len(all_dict["empty"])
|
||||
#print(yesnum)
|
||||
nonum = len(all_dict["noempty"])
|
||||
#print(nonum)
|
||||
images_txt = "../emptyJudge2/images.txt"
|
||||
index = 0
|
||||
|
||||
|
||||
def write_images(cur_list, num, fw, index):
|
||||
for feat_path in random.sample(cur_list, num):
|
||||
fw.write(str(index) + " " + feat_path + "\n")
|
||||
index += 1
|
||||
return index
|
||||
|
||||
with open(images_txt, "w") as fw:
|
||||
index = write_images(all_dict["noempty"], nonum, fw, index)
|
||||
index = write_images(all_dict["empty"], yesnum, fw, index)
|
||||
|
||||
|
||||
|
||||
# ----------- 写 image_class_labels.txt + train_test_split.txt --------------
|
||||
# src_dir = "/data/fineGrained/emptyJudge4"
|
||||
# src_dict = {"noemp":"0", "yesemp":"1", "hard": "2", "stack": "3"}
|
||||
# images_txt = os.path.join(src_dir, "images.txt")
|
||||
# image_class_labels_txt = os.path.join(src_dir, "image_class_labels.txt")
|
||||
# imgs_cnt = 0
|
||||
# with open(image_class_labels_txt, "w") as fw:
|
||||
# with open(images_txt, "r") as fr:
|
||||
# for cur_l in fr:
|
||||
# imgs_cnt += 1
|
||||
# img_index, img_f = cur_l.strip().split(" ")
|
||||
# folder_name = img_f.split("/")[0]
|
||||
# if folder_name in src_dict:
|
||||
# cur_line = img_index + " " + str(int(src_dict[folder_name])+1)
|
||||
# fw.write(cur_line + "\n")
|
||||
#
|
||||
# train_num = int(imgs_cnt*0.85)
|
||||
# print("train_num= ", train_num, ", imgs_cnt= ", imgs_cnt)
|
||||
# all_list = [1]*train_num + [0]*(imgs_cnt-train_num)
|
||||
# assert len(all_list) == imgs_cnt
|
||||
# random.shuffle(all_list)
|
||||
# train_test_split_txt = os.path.join(src_dir, "train_test_split.txt")
|
||||
# with open(train_test_split_txt, "w") as fw:
|
||||
# with open(images_txt, "r") as fr:
|
||||
# for cur_l in fr:
|
||||
# img_index, img_f = cur_l.strip().split(" ")
|
||||
# cur_line = img_index + " " + str(all_list[int(img_index) - 1])
|
||||
# fw.write(cur_line + "\n")
|
||||
|
||||
# ----------- 生成标准测试集 --------------
|
||||
# src_dir = "/data/fineGrained/emptyJudge5/images"
|
||||
# src_dict = {"noemp":"0", "yesemp":"1", "hard": "2", "fly": "3", "stack": "4"}
|
||||
# all_dict = {"noemp":[], "yesemp":[], "hard": [], "fly": [], "stack": []}
|
||||
# for sub, value in src_dict.items():
|
||||
# sub_path = os.path.join(src_dir, sub)
|
||||
# for cur_f in os.listdir(sub_path):
|
||||
# all_dict[sub].append(cur_f)
|
||||
#
|
||||
# dst_dir = src_dir + "_test"
|
||||
# os.makedirs(dst_dir, exist_ok=True)
|
||||
# for sub, value in src_dict.items():
|
||||
# sub_path = os.path.join(src_dir, sub)
|
||||
# sub_path_dst = os.path.join(dst_dir, sub)
|
||||
# os.makedirs(sub_path_dst, exist_ok=True)
|
||||
#
|
||||
# cur_list = all_dict[sub]
|
||||
# test_num = int(len(cur_list) * 0.05)
|
||||
# for cur_f in random.sample(cur_list, test_num):
|
||||
# cur_path = os.path.join(sub_path, cur_f)
|
||||
# cur_path_dst = os.path.join(sub_path_dst, cur_f)
|
||||
# os.system("cp %s %s" % (cur_path, cur_path_dst))
|
||||
src_dir = "../emptyJudge2/"
|
||||
src_dict = {"noempty":"0", "empty":"1"}
|
||||
images_txt = os.path.join(src_dir, "images.txt")
|
||||
image_class_labels_txt = os.path.join(src_dir, "image_class_labels.txt")
|
||||
imgs_cnt = 0
|
||||
with open(image_class_labels_txt, "w") as fw:
|
||||
with open(images_txt, "r") as fr:
|
||||
for cur_l in fr:
|
||||
imgs_cnt += 1
|
||||
img_index, img_f = cur_l.strip().split(" ")
|
||||
folder_name = img_f.split("/")[0]
|
||||
if folder_name in src_dict:
|
||||
cur_line = img_index + " " + str(int(src_dict[folder_name])+1)
|
||||
fw.write(cur_line + "\n")
|
||||
|
||||
train_num = int(imgs_cnt*0.85)
|
||||
print("train_num= ", train_num, ", imgs_cnt= ", imgs_cnt)
|
||||
all_list = [1]*train_num + [0]*(imgs_cnt-train_num)
|
||||
assert len(all_list) == imgs_cnt
|
||||
random.shuffle(all_list)
|
||||
train_test_split_txt = os.path.join(src_dir, "train_test_split.txt")
|
||||
with open(train_test_split_txt, "w") as fw:
|
||||
with open(images_txt, "r") as fr:
|
||||
for cur_l in fr:
|
||||
img_index, img_f = cur_l.strip().split(" ")
|
||||
cur_line = img_index + " " + str(all_list[int(img_index) - 1])
|
||||
fw.write(cur_line + "\n")
|
||||
|
Reference in New Issue
Block a user