add
This commit is contained in:
49
lightrise.py
Normal file
49
lightrise.py
Normal file
@ -0,0 +1,49 @@
|
||||
# coding=utf-8
|
||||
import os
|
||||
import torch
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
from torchvision import transforms
|
||||
import argparse
|
||||
from models.modeling import VisionTransformer, CONFIGS
|
||||
import time
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--pretrained_model", type=str, default="../module/ieemoo-ai-isempty/model/new/ieemooempty_vitlight_checkpoint.pth", help="load pretrained model") #使用自定义VIT
|
||||
args = parser.parse_args()
|
||||
|
||||
#args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
args.device = torch.device("cpu")
|
||||
|
||||
# 准备模型
|
||||
model = torch.load(args.pretrained_model,map_location=torch.device('cpu')) #自己预训练模型
|
||||
model.to(args.device)
|
||||
model.eval()
|
||||
|
||||
num_classes = 2
|
||||
cls_dict = {0: "noemp", 1: "yesemp"}
|
||||
|
||||
test_transform = transforms.Compose([transforms.Resize((600, 600), Image.BILINEAR),
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
|
||||
|
||||
|
||||
#复杂场景小模型测试单张图片
|
||||
def riseempty(imgdata):
|
||||
x = test_transform(imgdata)
|
||||
part_logits = model(x.unsqueeze(0).to(args.device))
|
||||
probs = torch.nn.Softmax(dim=-1)(part_logits)
|
||||
top2 = torch.argsort(probs, dim=-1, descending=True)
|
||||
riseclas_ids = top2[0][0]
|
||||
#print("cur_img result: class id: %d, score: %0.3f" % (riseclas_ids, probs[0, riseclas_ids].item()))
|
||||
riseresult={}
|
||||
riseresult["success"] = "true"
|
||||
riseresult["rst_cls"] = int(riseclas_ids)
|
||||
|
||||
return riseresult
|
||||
|
||||
if __name__ == "__main__":
|
||||
riseresult = riseempty("light.jpg")
|
||||
print(riseresult)
|
||||
|
||||
|
Reference in New Issue
Block a user