update ieemoo-ai-isempty.py.

This commit is contained in:
Brainway
2022-09-27 02:15:41 +00:00
committed by Gitee
parent 70e3e2fbb3
commit 4e9485090a

View File

@ -11,36 +11,40 @@ from gevent.pywsgi import WSGIServer
from PIL import Image
from torchvision import transforms
from models.modeling import VisionTransformer, CONFIGS
# import logging.config as log_config
sys.path.insert(0, ".")
import logging.config
from skywalking import agent, config
SW_SERVER = os.environ.get('SW_AGENT_COLLECTOR_BACKEND_SERVICES')
SW_SERVICE_NAME = os.environ.get('SW_AGENT_NAME')
if SW_SERVER and SW_SERVICE_NAME:
config.init() #采集服务的地址,给自己的服务起个名称
#config.init(collector="123.60.56.51:11800", service='ieemoo-ai-search') #采集服务的地址,给自己的服务起个名称
agent.start()
def setup_logging(path):
if os.path.exists(path):
with open(path, 'r') as f:
config = json.load(f)
logging.config.dictConfig(config)
logger = logging.getLogger("root")
return logger
logger = setup_logging('utils/logging.json')
#Flask对外服务接口
# from skywalking import agent, config
# SW_SERVER = os.environ.get('SW_AGENT_COLLECTOR_BACKEND_SERVICES')
# SW_SERVICE_NAME = os.environ.get('SW_AGENT_NAME')
# if SW_SERVER and SW_SERVICE_NAME:
# config.init() #采集服务的地址,给自己的服务起个名称
# #config.init(collector="123.60.56.51:11800", service='ieemoo-ai-search') #采集服务的地址,给自己的服务起个名称
# agent.start()
# def setup_logging(path):
# if os.path.exists(path):
# with open(path, 'r') as f:
# config = json.load(f)
# log_config.dictConfig(config)
# print = logging.getprint("root")
# return print
# print = setup_logging('utils/logging.json')
app = Flask(__name__)
app.use_reloader=False
def parse_args(model_file="../module/ieemoo-ai-isempty/model/now/emptyjudge5_checkpoint.bin"):
#def parse_args(model_file="output/emptyjudge5_checkpoint.bin"):
def parse_args(model_file="./output/ieemooempty_checkpoint_good.pth"):
parser = argparse.ArgumentParser()
parser.add_argument("--img_size", default=448, type=int, help="Resolution size")
parser.add_argument("--img_size", default=600, type=int, help="Resolution size")
parser.add_argument('--split', type=str, default='overlap', help="Split method")
parser.add_argument('--slide_step', type=int, default=12, help="Slide step for overlap split")
parser.add_argument('--slide_step', type=int, default=2, help="Slide step for overlap split")
parser.add_argument('--smoothing_value', type=float, default=0.0, help="Label smoothing value")
parser.add_argument("--pretrained_model", type=str, default=model_file, help="load pretrained model")
opt, unknown = parser.parse_known_args()
@ -57,7 +61,7 @@ class Predictor(object):
self.num_classes = 0
self.model = None
self.prepare_model()
self.test_transform = transforms.Compose([transforms.Resize((448, 448), Image.BILINEAR),
self.test_transform = transforms.Compose([transforms.Resize((600, 600), Image.BILINEAR),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
@ -65,27 +69,22 @@ class Predictor(object):
config = CONFIGS["ViT-B_16"]
config.split = self.args.split
config.slide_step = self.args.slide_step
model_name = os.path.basename(self.args.pretrained_model).replace("_checkpoint.bin", "")
#print("use model_name: ", model_name)
self.num_classes = 5
self.cls_dict = {0: "noemp", 1: "yesemp", 2: "hard", 3: "fly", 4: "stack"}
self.model = VisionTransformer(config, self.args.img_size, zero_head=True, num_classes=self.num_classes, smoothing_value=self.args.smoothing_value)
if self.args.pretrained_model is not None:
if not torch.cuda.is_available():
pretrained_model = torch.load(self.args.pretrained_model, map_location=torch.device('cpu'))['model']
self.model.load_state_dict(pretrained_model)
self.model = torch.load(self.args.pretrained_model)
else:
pretrained_model = torch.load(self.args.pretrained_model)['model']
self.model.load_state_dict(pretrained_model)
self.model = torch.load(self.args.pretrained_model,map_location='cpu')
self.model.eval()
self.model.to(self.args.device)
#self.model.eval()
def normal_predict(self, img_data, result):
# img = Image.open(img_path)
if img_data is None:
#print('error, img data is None')
logger.warning('error, img data is None')
print('error, img data is None')
return result
else:
with torch.no_grad():
@ -103,8 +102,7 @@ class Predictor(object):
return result
model_file ="../module/ieemoo-ai-isempty/model/now/emptyjudge5_checkpoint.bin"
#model_file ="output/emptyjudge5_checkpoint.bin"
model_file ="./output/ieemooempty_checkpoint_good.pth"
args = parse_args(model_file)
predictor = Predictor(args)
@ -116,7 +114,7 @@ def get_isempty():
data = request.get_data()
ip = request.remote_addr
#print('------ ip = %s ------' % ip)
logger.info(ip)
print(ip)
json_data = json.loads(data.decode("utf-8"))
getdateend = time.time()
@ -133,10 +131,10 @@ def get_isempty():
img_data = Image.fromarray(np.uint8(img_src))
result = predictor.normal_predict(img_data, result) # 1==empty, 0==nonEmpty
except Exception as e:
logger.warning(e)
print(e)
return repr(result)
logger.info(repr(result))
print(repr(result))
return repr(result)
if __name__ == "__main__":
app.run(host='192.168.1.142', port=8000)
app.run(host='0.0.0.0', port=14465)