update ieemoo-ai-isempty.py.
This commit is contained in:
@ -7,14 +7,36 @@ import cv2, base64
|
||||
import argparse
|
||||
import sys, os
|
||||
import torch
|
||||
from gevent.pywsgi import WSGIServer
|
||||
from PIL import Image
|
||||
from torchvision import transforms
|
||||
from models.modeling import VisionTransformer, CONFIGS
|
||||
from vit_pytorch import ViT
|
||||
# import logging.config as log_config
|
||||
sys.path.insert(0, ".")
|
||||
|
||||
#Flask对外服务接口
|
||||
|
||||
|
||||
# from skywalking import agent, config
|
||||
# SW_SERVER = os.environ.get('SW_AGENT_COLLECTOR_BACKEND_SERVICES')
|
||||
# SW_SERVICE_NAME = os.environ.get('SW_AGENT_NAME')
|
||||
# if SW_SERVER and SW_SERVICE_NAME:
|
||||
# config.init() #采集服务的地址,给自己的服务起个名称
|
||||
# #config.init(collector="123.60.56.51:11800", service='ieemoo-ai-search') #采集服务的地址,给自己的服务起个名称
|
||||
# agent.start()
|
||||
|
||||
# def setup_logging(path):
|
||||
# if os.path.exists(path):
|
||||
# with open(path, 'r') as f:
|
||||
# config = json.load(f)
|
||||
# log_config.dictConfig(config)
|
||||
# print = logging.getprint("root")
|
||||
# return print
|
||||
|
||||
# print = setup_logging('utils/logging.json')
|
||||
|
||||
|
||||
app = Flask(__name__)
|
||||
#app.use_reloader=False
|
||||
|
||||
@ -23,12 +45,12 @@ print(torch.__version__)
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--img_size", default=600, type=int, help="Resolution size")
|
||||
parser.add_argument("--img_size", default=320, type=int, help="Resolution size")
|
||||
parser.add_argument('--split', type=str, default='overlap', help="Split method")
|
||||
parser.add_argument('--slide_step', type=int, default=2, help="Slide step for overlap split")
|
||||
parser.add_argument('--smoothing_value', type=float, default=0.0, help="Label smoothing value")
|
||||
#使用自定义VIT
|
||||
parser.add_argument("--pretrained_model", type=str, default="../module/ieemoo-ai-isempty/model/now/ieemooempty_vit_checkpoint.pth", help="load pretrained model")
|
||||
parser.add_argument("--pretrained_model", type=str, default="../module/ieemoo-ai-isempty/model/now/emptyjudge5_checkpoint.bin", help="load pretrained model")
|
||||
#parser.add_argument("--pretrained_model", type=str, default="output/ieemooempty_vit_checkpoint.pth", help="load pretrained model") #使用自定义VIT
|
||||
opt, unknown = parser.parse_known_args()
|
||||
return opt
|
||||
|
||||
@ -43,7 +65,7 @@ class Predictor(object):
|
||||
self.num_classes = 0
|
||||
self.model = None
|
||||
self.prepare_model()
|
||||
self.test_transform = transforms.Compose([transforms.Resize((600, 600), Image.BILINEAR),
|
||||
self.test_transform = transforms.Compose([transforms.Resize((320, 320), Image.BILINEAR),
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
|
||||
|
||||
@ -62,7 +84,6 @@ class Predictor(object):
|
||||
# self.model = torch.load(self.args.pretrained_model,map_location='cpu')
|
||||
self.model = torch.load(self.args.pretrained_model,map_location=torch.device('cpu'))
|
||||
self.model.eval()
|
||||
if torch.cuda.is_available():
|
||||
self.model.to("cuda")
|
||||
|
||||
def normal_predict(self, img_data, result):
|
||||
@ -74,8 +95,8 @@ class Predictor(object):
|
||||
else:
|
||||
with torch.no_grad():
|
||||
x = self.test_transform(img_data)
|
||||
if torch.cuda.is_available():
|
||||
x = x.cuda()
|
||||
# if torch.cuda.is_available():
|
||||
# x = x.cuda()
|
||||
part_logits = self.model(x.unsqueeze(0))
|
||||
probs = torch.nn.Softmax(dim=-1)(part_logits)
|
||||
topN = torch.argsort(probs, dim=-1, descending=True).tolist()
|
||||
@ -93,7 +114,7 @@ predictor = Predictor(args)
|
||||
|
||||
@app.route("/isempty", methods=['POST'])
|
||||
def get_isempty():
|
||||
#print("begin")
|
||||
print("begin")
|
||||
|
||||
data = request.get_data()
|
||||
|
||||
|
Reference in New Issue
Block a user