update utils/data_utils.py.
This commit is contained in:
@ -12,37 +12,6 @@ from .autoaugment import AutoAugImageNetPolicy
|
|||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
def get_loader_new():
|
|
||||||
|
|
||||||
train_transform = transforms.Compose([transforms.Resize((600, 600), Image.BILINEAR),
|
|
||||||
transforms.RandomCrop((600, 600)), #448
|
|
||||||
transforms.RandomHorizontalFlip(),
|
|
||||||
transforms.ToTensor(),
|
|
||||||
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
|
|
||||||
test_transform = transforms.Compose([transforms.Resize((600, 600), Image.BILINEAR),
|
|
||||||
transforms.ToTensor(),
|
|
||||||
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
|
|
||||||
trainset = emptyJudge(root='./emptyJudge5', is_train=True, transform=train_transform)
|
|
||||||
testset = emptyJudge(root='./emptyJudge5', is_train=False, transform=test_transform)
|
|
||||||
|
|
||||||
|
|
||||||
train_sampler = RandomSampler(trainset)
|
|
||||||
test_sampler = SequentialSampler(testset)
|
|
||||||
train_loader = DataLoader(trainset,
|
|
||||||
sampler=train_sampler,
|
|
||||||
batch_size=8,
|
|
||||||
num_workers=4,
|
|
||||||
drop_last=True,
|
|
||||||
pin_memory=True)
|
|
||||||
test_loader = DataLoader(testset,
|
|
||||||
sampler=test_sampler,
|
|
||||||
batch_size=8,
|
|
||||||
num_workers=4,
|
|
||||||
pin_memory=True) if testset is not None else None
|
|
||||||
|
|
||||||
print('emptyJudge5 getdataloader ok!')
|
|
||||||
return train_loader, test_loader
|
|
||||||
|
|
||||||
|
|
||||||
def get_loader(args):
|
def get_loader(args):
|
||||||
if args.local_rank not in [-1, 0]:
|
if args.local_rank not in [-1, 0]:
|
||||||
@ -132,7 +101,7 @@ def get_loader(args):
|
|||||||
testset = INat2017(args.data_root, 'val', test_transform)
|
testset = INat2017(args.data_root, 'val', test_transform)
|
||||||
elif args.dataset == 'emptyJudge5' or args.dataset == 'emptyJudge4':
|
elif args.dataset == 'emptyJudge5' or args.dataset == 'emptyJudge4':
|
||||||
train_transform = transforms.Compose([transforms.Resize((600, 600), Image.BILINEAR),
|
train_transform = transforms.Compose([transforms.Resize((600, 600), Image.BILINEAR),
|
||||||
transforms.RandomCrop((600, 600)),
|
transforms.RandomCrop((320, 320)),
|
||||||
transforms.RandomHorizontalFlip(),
|
transforms.RandomHorizontalFlip(),
|
||||||
transforms.ToTensor(),
|
transforms.ToTensor(),
|
||||||
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
|
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
|
||||||
@ -140,7 +109,7 @@ def get_loader(args):
|
|||||||
# transforms.CenterCrop((448, 448)),
|
# transforms.CenterCrop((448, 448)),
|
||||||
# transforms.ToTensor(),
|
# transforms.ToTensor(),
|
||||||
# transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
|
# transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
|
||||||
test_transform = transforms.Compose([transforms.Resize((600, 600), Image.BILINEAR),
|
test_transform = transforms.Compose([transforms.Resize((320, 320), Image.BILINEAR),
|
||||||
transforms.ToTensor(),
|
transforms.ToTensor(),
|
||||||
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
|
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
|
||||||
trainset = emptyJudge(root=args.data_root, is_train=True, transform=train_transform)
|
trainset = emptyJudge(root=args.data_root, is_train=True, transform=train_transform)
|
||||||
|
Reference in New Issue
Block a user