update ieemoo-ai-isempty.py.

This commit is contained in:
Brainway
2022-11-09 02:13:14 +00:00
committed by Gitee
parent a8b05b53e5
commit 0ac741c608

View File

@ -12,6 +12,7 @@ from PIL import Image
from torchvision import transforms
from models.modeling import VisionTransformer, CONFIGS
from vit_pytorch import ViT
import lightrise
# import logging.config as log_config
sys.path.insert(0, ".")
@ -49,9 +50,8 @@ def parse_args():
parser.add_argument('--split', type=str, default='overlap', help="Split method")
parser.add_argument('--slide_step', type=int, default=2, help="Slide step for overlap split")
parser.add_argument('--smoothing_value', type=float, default=0.0, help="Label smoothing value")
#parser.add_argument("--pretrained_model", type=str, default="../module/ieemoo-ai-isempty/model/now/emptyjudge5_checkpoint.bin", help="load pretrained model")
#parser.add_argument("--pretrained_model", type=str, default="output/ieemooempty_vit_checkpoint.pth", help="load pretrained model") #使用自定义VIT
parser.add_argument("--pretrained_model", type=str, default="../module/ieemoo-ai-isempty/model/new/ieemooempty_vit_checkpoint.pth", help="load pretrained model")
#parser.add_argument("--pretrained_model", type=str, default="output/ieemooempty_vit_checkpoint.pth", help="load pretrained model") #使用自定义VIT
opt, unknown = parser.parse_known_args()
return opt
@ -83,7 +83,7 @@ class Predictor(object):
# self.model = torch.load(self.args.pretrained_model)
# else:
# self.model = torch.load(self.args.pretrained_model,map_location='cpu')
self.model = torch.load(self.args.pretrained_model,map_location=torch.device('cpu'))
self.model = torch.load(self.args.pretrained_model)
self.model.eval()
self.model.to("cuda")
@ -103,9 +103,11 @@ class Predictor(object):
topN = torch.argsort(probs, dim=-1, descending=True).tolist()
clas_ids = topN[0][0]
clas_ids = 0 if 0==int(clas_ids) or 2 == int(clas_ids) or 3 == int(clas_ids) else 1
print("cur_img result: class id: %d, score: %0.3f" % (clas_ids, probs[0, clas_ids].item()))
#print("cur_img result: class id: %d, score: %0.3f" % (clas_ids, probs[0, clas_ids].item()))
result={}
result["success"] = "true"
result["rst_cls"] = str(clas_ids)
return result
@ -115,36 +117,51 @@ predictor = Predictor(args)
@app.route("/isempty", methods=['POST'])
def get_isempty():
print("begin")
start = time.time()
#print('--------------------EmptyPredict-----------------')
data = request.get_data()
ip = request.remote_addr
#print('------ ip = %s ------' % ip)
print(ip)
json_data = json.loads(data.decode("utf-8"))
getdateend = time.time()
#print('get date use time: {0:.2f}s'.format(getdateend - start))
pic = json_data.get("pic")
imgdata = base64.b64decode(pic)
result = {}
result ={}
imgdata = base64.b64decode(pic)
imgdata_np = np.frombuffer(imgdata, dtype='uint8')
img_src = cv2.imdecode(imgdata_np, cv2.IMREAD_COLOR)
img_data = Image.fromarray(np.uint8(img_src))
cv2.imwrite('huanyuan.jpg',img_src)
#img_data = Image.fromarray(np.uint8(img_src)) #这个转换不能要,会导致判空错误增加
img_data = Image.open('huanyuan.jpg')
result = predictor.normal_predict(img_data, result) # 1==empty, 0==nonEmpty
riseresult = lightrise.riseempty(img_data)
#print(riseresult["rst_cls"])
if(result["rst_cls"]==1):
if(riseresult["rst_cls"]==1):
result = {}
result["success"] = "true"
result["rst_cls"] = 1
else:
result = {}
result["success"] = "true"
result["rst_cls"] = 0
else:
if(riseresult["rst_cls"]==0):
result = {}
result["success"] = "true"
result["rst_cls"] = 0
else:
result = {}
result["success"] = "true"
result["rst_cls"] = 1
return repr(result)
def getByte(path):
with open(path, 'rb') as f:
img_byte = base64.b64encode(f.read())
img_str = img_byte.decode('utf-8')
return img_str
if __name__ == "__main__":
app.run(host='0.0.0.0', port=8888)
# result ={}
# imgdata = base64.b64decode(getByte("img.jpg"))
# imgdata_np = np.frombuffer(imgdata, dtype='uint8')
# img_src = cv2.imdecode(imgdata_np, cv2.IMREAD_COLOR)
# img_data = Image.fromarray(np.uint8(img_src))
# result = predictor.normal_predict(img_data, result)
# print(result)