update ieemoo-ai-isempty.py.
This commit is contained in:
@ -12,6 +12,7 @@ from PIL import Image
|
||||
from torchvision import transforms
|
||||
from models.modeling import VisionTransformer, CONFIGS
|
||||
from vit_pytorch import ViT
|
||||
import lightrise
|
||||
# import logging.config as log_config
|
||||
sys.path.insert(0, ".")
|
||||
|
||||
@ -49,9 +50,8 @@ def parse_args():
|
||||
parser.add_argument('--split', type=str, default='overlap', help="Split method")
|
||||
parser.add_argument('--slide_step', type=int, default=2, help="Slide step for overlap split")
|
||||
parser.add_argument('--smoothing_value', type=float, default=0.0, help="Label smoothing value")
|
||||
#parser.add_argument("--pretrained_model", type=str, default="../module/ieemoo-ai-isempty/model/now/emptyjudge5_checkpoint.bin", help="load pretrained model")
|
||||
#parser.add_argument("--pretrained_model", type=str, default="output/ieemooempty_vit_checkpoint.pth", help="load pretrained model") #使用自定义VIT
|
||||
parser.add_argument("--pretrained_model", type=str, default="../module/ieemoo-ai-isempty/model/new/ieemooempty_vit_checkpoint.pth", help="load pretrained model")
|
||||
#parser.add_argument("--pretrained_model", type=str, default="output/ieemooempty_vit_checkpoint.pth", help="load pretrained model") #使用自定义VIT
|
||||
opt, unknown = parser.parse_known_args()
|
||||
return opt
|
||||
|
||||
@ -83,7 +83,7 @@ class Predictor(object):
|
||||
# self.model = torch.load(self.args.pretrained_model)
|
||||
# else:
|
||||
# self.model = torch.load(self.args.pretrained_model,map_location='cpu')
|
||||
self.model = torch.load(self.args.pretrained_model,map_location=torch.device('cpu'))
|
||||
self.model = torch.load(self.args.pretrained_model)
|
||||
self.model.eval()
|
||||
self.model.to("cuda")
|
||||
|
||||
@ -103,9 +103,11 @@ class Predictor(object):
|
||||
topN = torch.argsort(probs, dim=-1, descending=True).tolist()
|
||||
clas_ids = topN[0][0]
|
||||
clas_ids = 0 if 0==int(clas_ids) or 2 == int(clas_ids) or 3 == int(clas_ids) else 1
|
||||
print("cur_img result: class id: %d, score: %0.3f" % (clas_ids, probs[0, clas_ids].item()))
|
||||
#print("cur_img result: class id: %d, score: %0.3f" % (clas_ids, probs[0, clas_ids].item()))
|
||||
result={}
|
||||
result["success"] = "true"
|
||||
result["rst_cls"] = str(clas_ids)
|
||||
|
||||
return result
|
||||
|
||||
|
||||
@ -115,36 +117,51 @@ predictor = Predictor(args)
|
||||
|
||||
@app.route("/isempty", methods=['POST'])
|
||||
def get_isempty():
|
||||
print("begin")
|
||||
|
||||
start = time.time()
|
||||
#print('--------------------EmptyPredict-----------------')
|
||||
data = request.get_data()
|
||||
ip = request.remote_addr
|
||||
#print('------ ip = %s ------' % ip)
|
||||
print(ip)
|
||||
|
||||
json_data = json.loads(data.decode("utf-8"))
|
||||
getdateend = time.time()
|
||||
#print('get date use time: {0:.2f}s'.format(getdateend - start))
|
||||
|
||||
pic = json_data.get("pic")
|
||||
imgdata = base64.b64decode(pic)
|
||||
result = {}
|
||||
|
||||
result ={}
|
||||
imgdata = base64.b64decode(pic)
|
||||
imgdata_np = np.frombuffer(imgdata, dtype='uint8')
|
||||
img_src = cv2.imdecode(imgdata_np, cv2.IMREAD_COLOR)
|
||||
img_data = Image.fromarray(np.uint8(img_src))
|
||||
cv2.imwrite('huanyuan.jpg',img_src)
|
||||
#img_data = Image.fromarray(np.uint8(img_src)) #这个转换不能要,会导致判空错误增加
|
||||
img_data = Image.open('huanyuan.jpg')
|
||||
result = predictor.normal_predict(img_data, result) # 1==empty, 0==nonEmpty
|
||||
|
||||
riseresult = lightrise.riseempty(img_data)
|
||||
#print(riseresult["rst_cls"])
|
||||
|
||||
if(result["rst_cls"]==1):
|
||||
if(riseresult["rst_cls"]==1):
|
||||
result = {}
|
||||
result["success"] = "true"
|
||||
result["rst_cls"] = 1
|
||||
else:
|
||||
result = {}
|
||||
result["success"] = "true"
|
||||
result["rst_cls"] = 0
|
||||
else:
|
||||
if(riseresult["rst_cls"]==0):
|
||||
result = {}
|
||||
result["success"] = "true"
|
||||
result["rst_cls"] = 0
|
||||
else:
|
||||
result = {}
|
||||
result["success"] = "true"
|
||||
result["rst_cls"] = 1
|
||||
|
||||
return repr(result)
|
||||
|
||||
def getByte(path):
|
||||
with open(path, 'rb') as f:
|
||||
img_byte = base64.b64encode(f.read())
|
||||
img_str = img_byte.decode('utf-8')
|
||||
return img_str
|
||||
|
||||
if __name__ == "__main__":
|
||||
app.run(host='0.0.0.0', port=8888)
|
||||
|
||||
# result ={}
|
||||
# imgdata = base64.b64decode(getByte("img.jpg"))
|
||||
# imgdata_np = np.frombuffer(imgdata, dtype='uint8')
|
||||
# img_src = cv2.imdecode(imgdata_np, cv2.IMREAD_COLOR)
|
||||
# img_data = Image.fromarray(np.uint8(img_src))
|
||||
# result = predictor.normal_predict(img_data, result)
|
||||
# print(result)
|
||||
|
Reference in New Issue
Block a user