# -*- coding: utf-8 -*- """ Created on Fri Jan 19 14:01:46 2024 @author: ym """ import torch import os # import torchvision.transforms as T class Config: # network settings backbone = 'resnet18' # [resnet18, mobilevit_s, mobilenet_v2, mobilenetv3] batch_size = 8 embedding_size = 256 img_size = 224 current_path = os.path.dirname(os.path.abspath(__file__)) model_path = os.path.join(current_path, r"ckpts\resnet18_1220\best.pth") # model_path = "./trackers/reid/ckpts/resnet18_1220/best.pth" device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # ============================================================================= # metric = 'arcface' # [cosface, arcface] # drop_ratio = 0.5 # # # training settings # checkpoints = "checkpoints/Mobilev3Large_1225" # [resnet18, mobilevit_s, mobilenet_v2, mobilenetv3] # restore = False # # test_model = "./checkpoints/resnet18_1220/best.pth" # # # device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # pin_memory = True # if memory is large, set it True to speed up a bit # num_workers = 4 # dataloader # ============================================================================= config = Config()