# from yacs.config import CfgNode as CfgNode import torchvision.transforms as T import torch import os class globalVal: tempLibList = [] tempLibLists = {} track_y_lists = [] mac_id = None back_return_similarity = [] back_add_similarity = [] front_return_similarity = [] front_add_similarity = [] comprehensive_similarity = [] class config: save_videos_dir = 'videos' #url # push_url = 'http://api.test2.ieemoo.cn/emoo-api/intelligence/addVideoPathBySequenceId.do' push_url = 'https://api.test2.ieemoo.cn/emoo-api/intelligence/addVideoPathBySequenceId.do' # 闲时上传 get_config_url = 'https://api.test2.ieemoo.cn/emoo-api/intelligence/addVideoPathByStoreId.do' # 闲时上传相应配置 storidPth = 'tools/storeId.txt' #obs update obs_access_key_id = 'LHXJC7GIC2NNUUHHTNVI' obs_secret_access_key = 'sVWvEItrFKWPp5DxeMvX8jLFU69iXPpzkjuMX3iM' obs_server = 'https://obs.cn-east-3.myhuaweicloud.com' obs_bucketName = 'ieemoo-ai' keys = ['x', 'y', 'w', 'h', 'track_id', 'score', 'cls', 'frame_index'] obs_root_dir = 'ieemoo_ai_data' #contrast config host = "192.168.1.28" port = "19530" embedding_size = 256 img_size = 224 test_transform = T.Compose([ T.ToTensor(), T.Resize((224, 224)), T.ConvertImageDtype(torch.float32), T.Normalize(mean=[0.5], std=[0.5]), ]) # test_model = "./tools/ckpts/MobilenetV3Large_noParallel_2624.pth" test_model = "./tools/ckpts/resnet18_0721_best.pth" tracking_model = "./tools/ckpts/best_158734_cls11_noaug10.pt" device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') httpHost = '0.0.0.0' httpPort = 8088 #tracking config botsort = './ytracking/tracking/trackers/cfg/botsort.yaml' incart = './tools/Template_images/incart.png' outcart = './tools/Template_images/outcart.png' cartboarder = './tools/Template_images/cartboarder.png' edgeline = './tools/Template_images/edgeline.png' cartedge = './tools/Template_images/cartedge.png' incart_ftmp = './tools/Template_images/incart_ftmp.png' action_type = { "1": 'purchase', '2': 'jettison', '3': 'unswept_purchase', '4': 'unswept_jettison' } camera_id = { '0': 'back', '1': 'front', } recognize_result = { '01': 'uncatalogued', '02': 'fail', '03': 'exception', '04': 'pass', } # reid config backbone = 'resnet18' # [resnet18, mobilevit_s, mobilenet_v2, mobilenetv3] batch_size = 8 model_path = './tools/ckpts/best_resnet18_0515.pth' temp_video_name = None cfg = config() gvalue = globalVal()