update
This commit is contained in:
7
ytracking/ultralytics/models/yolo/pose/__init__.py
Normal file
7
ytracking/ultralytics/models/yolo/pose/__init__.py
Normal file
@ -0,0 +1,7 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
from .predict import PosePredictor
|
||||
from .train import PoseTrainer
|
||||
from .val import PoseValidator
|
||||
|
||||
__all__ = 'PoseTrainer', 'PoseValidator', 'PosePredictor'
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
52
ytracking/ultralytics/models/yolo/pose/predict.py
Normal file
52
ytracking/ultralytics/models/yolo/pose/predict.py
Normal file
@ -0,0 +1,52 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
from ultralytics.engine.results import Results
|
||||
from ultralytics.models.yolo.detect.predict import DetectionPredictor
|
||||
from ultralytics.utils import DEFAULT_CFG, LOGGER, ops
|
||||
|
||||
|
||||
class PosePredictor(DetectionPredictor):
|
||||
"""
|
||||
A class extending the DetectionPredictor class for prediction based on a pose model.
|
||||
|
||||
Example:
|
||||
```python
|
||||
from ultralytics.utils import ASSETS
|
||||
from ultralytics.models.yolo.pose import PosePredictor
|
||||
|
||||
args = dict(model='yolov8n-pose.pt', source=ASSETS)
|
||||
predictor = PosePredictor(overrides=args)
|
||||
predictor.predict_cli()
|
||||
```
|
||||
"""
|
||||
|
||||
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
|
||||
super().__init__(cfg, overrides, _callbacks)
|
||||
self.args.task = 'pose'
|
||||
if isinstance(self.args.device, str) and self.args.device.lower() == 'mps':
|
||||
LOGGER.warning("WARNING ⚠️ Apple MPS known Pose bug. Recommend 'device=cpu' for Pose models. "
|
||||
'See https://github.com/ultralytics/ultralytics/issues/4031.')
|
||||
|
||||
def postprocess(self, preds, img, orig_imgs):
|
||||
"""Return detection results for a given input image or list of images."""
|
||||
preds = ops.non_max_suppression(preds,
|
||||
self.args.conf,
|
||||
self.args.iou,
|
||||
agnostic=self.args.agnostic_nms,
|
||||
max_det=self.args.max_det,
|
||||
classes=self.args.classes,
|
||||
nc=len(self.model.names))
|
||||
|
||||
if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list
|
||||
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
|
||||
|
||||
results = []
|
||||
for i, pred in enumerate(preds):
|
||||
orig_img = orig_imgs[i]
|
||||
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape).round()
|
||||
pred_kpts = pred[:, 6:].view(len(pred), *self.model.kpt_shape) if len(pred) else pred[:, 6:]
|
||||
pred_kpts = ops.scale_coords(img.shape[2:], pred_kpts, orig_img.shape)
|
||||
img_path = self.batch[0][i]
|
||||
results.append(
|
||||
Results(orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6], keypoints=pred_kpts))
|
||||
return results
|
73
ytracking/ultralytics/models/yolo/pose/train.py
Normal file
73
ytracking/ultralytics/models/yolo/pose/train.py
Normal file
@ -0,0 +1,73 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
from copy import copy
|
||||
|
||||
from ultralytics.models import yolo
|
||||
from ultralytics.nn.tasks import PoseModel
|
||||
from ultralytics.utils import DEFAULT_CFG, LOGGER
|
||||
from ultralytics.utils.plotting import plot_images, plot_results
|
||||
|
||||
|
||||
class PoseTrainer(yolo.detect.DetectionTrainer):
|
||||
"""
|
||||
A class extending the DetectionTrainer class for training based on a pose model.
|
||||
|
||||
Example:
|
||||
```python
|
||||
from ultralytics.models.yolo.pose import PoseTrainer
|
||||
|
||||
args = dict(model='yolov8n-pose.pt', data='coco8-pose.yaml', epochs=3)
|
||||
trainer = PoseTrainer(overrides=args)
|
||||
trainer.train()
|
||||
```
|
||||
"""
|
||||
|
||||
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
|
||||
"""Initialize a PoseTrainer object with specified configurations and overrides."""
|
||||
if overrides is None:
|
||||
overrides = {}
|
||||
overrides['task'] = 'pose'
|
||||
super().__init__(cfg, overrides, _callbacks)
|
||||
|
||||
if isinstance(self.args.device, str) and self.args.device.lower() == 'mps':
|
||||
LOGGER.warning("WARNING ⚠️ Apple MPS known Pose bug. Recommend 'device=cpu' for Pose models. "
|
||||
'See https://github.com/ultralytics/ultralytics/issues/4031.')
|
||||
|
||||
def get_model(self, cfg=None, weights=None, verbose=True):
|
||||
"""Get pose estimation model with specified configuration and weights."""
|
||||
model = PoseModel(cfg, ch=3, nc=self.data['nc'], data_kpt_shape=self.data['kpt_shape'], verbose=verbose)
|
||||
if weights:
|
||||
model.load(weights)
|
||||
|
||||
return model
|
||||
|
||||
def set_model_attributes(self):
|
||||
"""Sets keypoints shape attribute of PoseModel."""
|
||||
super().set_model_attributes()
|
||||
self.model.kpt_shape = self.data['kpt_shape']
|
||||
|
||||
def get_validator(self):
|
||||
"""Returns an instance of the PoseValidator class for validation."""
|
||||
self.loss_names = 'box_loss', 'pose_loss', 'kobj_loss', 'cls_loss', 'dfl_loss'
|
||||
return yolo.pose.PoseValidator(self.test_loader, save_dir=self.save_dir, args=copy(self.args))
|
||||
|
||||
def plot_training_samples(self, batch, ni):
|
||||
"""Plot a batch of training samples with annotated class labels, bounding boxes, and keypoints."""
|
||||
images = batch['img']
|
||||
kpts = batch['keypoints']
|
||||
cls = batch['cls'].squeeze(-1)
|
||||
bboxes = batch['bboxes']
|
||||
paths = batch['im_file']
|
||||
batch_idx = batch['batch_idx']
|
||||
plot_images(images,
|
||||
batch_idx,
|
||||
cls,
|
||||
bboxes,
|
||||
kpts=kpts,
|
||||
paths=paths,
|
||||
fname=self.save_dir / f'train_batch{ni}.jpg',
|
||||
on_plot=self.on_plot)
|
||||
|
||||
def plot_metrics(self):
|
||||
"""Plots training/val metrics."""
|
||||
plot_results(file=self.csv, pose=True, on_plot=self.on_plot) # save results.png
|
215
ytracking/ultralytics/models/yolo/pose/val.py
Normal file
215
ytracking/ultralytics/models/yolo/pose/val.py
Normal file
@ -0,0 +1,215 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from ultralytics.models.yolo.detect import DetectionValidator
|
||||
from ultralytics.utils import LOGGER, ops
|
||||
from ultralytics.utils.checks import check_requirements
|
||||
from ultralytics.utils.metrics import OKS_SIGMA, PoseMetrics, box_iou, kpt_iou
|
||||
from ultralytics.utils.plotting import output_to_target, plot_images
|
||||
|
||||
|
||||
class PoseValidator(DetectionValidator):
|
||||
"""
|
||||
A class extending the DetectionValidator class for validation based on a pose model.
|
||||
|
||||
Example:
|
||||
```python
|
||||
from ultralytics.models.yolo.pose import PoseValidator
|
||||
|
||||
args = dict(model='yolov8n-pose.pt', data='coco8-pose.yaml')
|
||||
validator = PoseValidator(args=args)
|
||||
validator()
|
||||
```
|
||||
"""
|
||||
|
||||
def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None):
|
||||
"""Initialize a 'PoseValidator' object with custom parameters and assigned attributes."""
|
||||
super().__init__(dataloader, save_dir, pbar, args, _callbacks)
|
||||
self.sigma = None
|
||||
self.kpt_shape = None
|
||||
self.args.task = 'pose'
|
||||
self.metrics = PoseMetrics(save_dir=self.save_dir, on_plot=self.on_plot)
|
||||
if isinstance(self.args.device, str) and self.args.device.lower() == 'mps':
|
||||
LOGGER.warning("WARNING ⚠️ Apple MPS known Pose bug. Recommend 'device=cpu' for Pose models. "
|
||||
'See https://github.com/ultralytics/ultralytics/issues/4031.')
|
||||
|
||||
def preprocess(self, batch):
|
||||
"""Preprocesses the batch by converting the 'keypoints' data into a float and moving it to the device."""
|
||||
batch = super().preprocess(batch)
|
||||
batch['keypoints'] = batch['keypoints'].to(self.device).float()
|
||||
return batch
|
||||
|
||||
def get_desc(self):
|
||||
"""Returns description of evaluation metrics in string format."""
|
||||
return ('%22s' + '%11s' * 10) % ('Class', 'Images', 'Instances', 'Box(P', 'R', 'mAP50', 'mAP50-95)', 'Pose(P',
|
||||
'R', 'mAP50', 'mAP50-95)')
|
||||
|
||||
def postprocess(self, preds):
|
||||
"""Apply non-maximum suppression and return detections with high confidence scores."""
|
||||
return ops.non_max_suppression(preds,
|
||||
self.args.conf,
|
||||
self.args.iou,
|
||||
labels=self.lb,
|
||||
multi_label=True,
|
||||
agnostic=self.args.single_cls,
|
||||
max_det=self.args.max_det,
|
||||
nc=self.nc)
|
||||
|
||||
def init_metrics(self, model):
|
||||
"""Initiate pose estimation metrics for YOLO model."""
|
||||
super().init_metrics(model)
|
||||
self.kpt_shape = self.data['kpt_shape']
|
||||
is_pose = self.kpt_shape == [17, 3]
|
||||
nkpt = self.kpt_shape[0]
|
||||
self.sigma = OKS_SIGMA if is_pose else np.ones(nkpt) / nkpt
|
||||
|
||||
def update_metrics(self, preds, batch):
|
||||
"""Metrics."""
|
||||
for si, pred in enumerate(preds):
|
||||
idx = batch['batch_idx'] == si
|
||||
cls = batch['cls'][idx]
|
||||
bbox = batch['bboxes'][idx]
|
||||
kpts = batch['keypoints'][idx]
|
||||
nl, npr = cls.shape[0], pred.shape[0] # number of labels, predictions
|
||||
nk = kpts.shape[1] # number of keypoints
|
||||
shape = batch['ori_shape'][si]
|
||||
correct_kpts = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init
|
||||
correct_bboxes = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init
|
||||
self.seen += 1
|
||||
|
||||
if npr == 0:
|
||||
if nl:
|
||||
self.stats.append((correct_bboxes, correct_kpts, *torch.zeros(
|
||||
(2, 0), device=self.device), cls.squeeze(-1)))
|
||||
if self.args.plots:
|
||||
self.confusion_matrix.process_batch(detections=None, labels=cls.squeeze(-1))
|
||||
continue
|
||||
|
||||
# Predictions
|
||||
if self.args.single_cls:
|
||||
pred[:, 5] = 0
|
||||
predn = pred.clone()
|
||||
ops.scale_boxes(batch['img'][si].shape[1:], predn[:, :4], shape,
|
||||
ratio_pad=batch['ratio_pad'][si]) # native-space pred
|
||||
pred_kpts = predn[:, 6:].view(npr, nk, -1)
|
||||
ops.scale_coords(batch['img'][si].shape[1:], pred_kpts, shape, ratio_pad=batch['ratio_pad'][si])
|
||||
|
||||
# Evaluate
|
||||
if nl:
|
||||
height, width = batch['img'].shape[2:]
|
||||
tbox = ops.xywh2xyxy(bbox) * torch.tensor(
|
||||
(width, height, width, height), device=self.device) # target boxes
|
||||
ops.scale_boxes(batch['img'][si].shape[1:], tbox, shape,
|
||||
ratio_pad=batch['ratio_pad'][si]) # native-space labels
|
||||
tkpts = kpts.clone()
|
||||
tkpts[..., 0] *= width
|
||||
tkpts[..., 1] *= height
|
||||
tkpts = ops.scale_coords(batch['img'][si].shape[1:], tkpts, shape, ratio_pad=batch['ratio_pad'][si])
|
||||
labelsn = torch.cat((cls, tbox), 1) # native-space labels
|
||||
correct_bboxes = self._process_batch(predn[:, :6], labelsn)
|
||||
correct_kpts = self._process_batch(predn[:, :6], labelsn, pred_kpts, tkpts)
|
||||
if self.args.plots:
|
||||
self.confusion_matrix.process_batch(predn, labelsn)
|
||||
|
||||
# Append correct_masks, correct_boxes, pconf, pcls, tcls
|
||||
self.stats.append((correct_bboxes, correct_kpts, pred[:, 4], pred[:, 5], cls.squeeze(-1)))
|
||||
|
||||
# Save
|
||||
if self.args.save_json:
|
||||
self.pred_to_json(predn, batch['im_file'][si])
|
||||
# if self.args.save_txt:
|
||||
# save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / f'{path.stem}.txt')
|
||||
|
||||
def _process_batch(self, detections, labels, pred_kpts=None, gt_kpts=None):
|
||||
"""
|
||||
Return correct prediction matrix.
|
||||
|
||||
Args:
|
||||
detections (torch.Tensor): Tensor of shape [N, 6] representing detections.
|
||||
Each detection is of the format: x1, y1, x2, y2, conf, class.
|
||||
labels (torch.Tensor): Tensor of shape [M, 5] representing labels.
|
||||
Each label is of the format: class, x1, y1, x2, y2.
|
||||
pred_kpts (torch.Tensor, optional): Tensor of shape [N, 51] representing predicted keypoints.
|
||||
51 corresponds to 17 keypoints each with 3 values.
|
||||
gt_kpts (torch.Tensor, optional): Tensor of shape [N, 51] representing ground truth keypoints.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Correct prediction matrix of shape [N, 10] for 10 IoU levels.
|
||||
"""
|
||||
if pred_kpts is not None and gt_kpts is not None:
|
||||
# `0.53` is from https://github.com/jin-s13/xtcocoapi/blob/master/xtcocotools/cocoeval.py#L384
|
||||
area = ops.xyxy2xywh(labels[:, 1:])[:, 2:].prod(1) * 0.53
|
||||
iou = kpt_iou(gt_kpts, pred_kpts, sigma=self.sigma, area=area)
|
||||
else: # boxes
|
||||
iou = box_iou(labels[:, 1:], detections[:, :4])
|
||||
|
||||
return self.match_predictions(detections[:, 5], labels[:, 0], iou)
|
||||
|
||||
def plot_val_samples(self, batch, ni):
|
||||
"""Plots and saves validation set samples with predicted bounding boxes and keypoints."""
|
||||
plot_images(batch['img'],
|
||||
batch['batch_idx'],
|
||||
batch['cls'].squeeze(-1),
|
||||
batch['bboxes'],
|
||||
kpts=batch['keypoints'],
|
||||
paths=batch['im_file'],
|
||||
fname=self.save_dir / f'val_batch{ni}_labels.jpg',
|
||||
names=self.names,
|
||||
on_plot=self.on_plot)
|
||||
|
||||
def plot_predictions(self, batch, preds, ni):
|
||||
"""Plots predictions for YOLO model."""
|
||||
pred_kpts = torch.cat([p[:, 6:].view(-1, *self.kpt_shape) for p in preds], 0)
|
||||
plot_images(batch['img'],
|
||||
*output_to_target(preds, max_det=self.args.max_det),
|
||||
kpts=pred_kpts,
|
||||
paths=batch['im_file'],
|
||||
fname=self.save_dir / f'val_batch{ni}_pred.jpg',
|
||||
names=self.names,
|
||||
on_plot=self.on_plot) # pred
|
||||
|
||||
def pred_to_json(self, predn, filename):
|
||||
"""Converts YOLO predictions to COCO JSON format."""
|
||||
stem = Path(filename).stem
|
||||
image_id = int(stem) if stem.isnumeric() else stem
|
||||
box = ops.xyxy2xywh(predn[:, :4]) # xywh
|
||||
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
|
||||
for p, b in zip(predn.tolist(), box.tolist()):
|
||||
self.jdict.append({
|
||||
'image_id': image_id,
|
||||
'category_id': self.class_map[int(p[5])],
|
||||
'bbox': [round(x, 3) for x in b],
|
||||
'keypoints': p[6:],
|
||||
'score': round(p[4], 5)})
|
||||
|
||||
def eval_json(self, stats):
|
||||
"""Evaluates object detection model using COCO JSON format."""
|
||||
if self.args.save_json and self.is_coco and len(self.jdict):
|
||||
anno_json = self.data['path'] / 'annotations/person_keypoints_val2017.json' # annotations
|
||||
pred_json = self.save_dir / 'predictions.json' # predictions
|
||||
LOGGER.info(f'\nEvaluating pycocotools mAP using {pred_json} and {anno_json}...')
|
||||
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
|
||||
check_requirements('pycocotools>=2.0.6')
|
||||
from pycocotools.coco import COCO # noqa
|
||||
from pycocotools.cocoeval import COCOeval # noqa
|
||||
|
||||
for x in anno_json, pred_json:
|
||||
assert x.is_file(), f'{x} file not found'
|
||||
anno = COCO(str(anno_json)) # init annotations api
|
||||
pred = anno.loadRes(str(pred_json)) # init predictions api (must pass string, not Path)
|
||||
for i, eval in enumerate([COCOeval(anno, pred, 'bbox'), COCOeval(anno, pred, 'keypoints')]):
|
||||
if self.is_coco:
|
||||
eval.params.imgIds = [int(Path(x).stem) for x in self.dataloader.dataset.im_files] # im to eval
|
||||
eval.evaluate()
|
||||
eval.accumulate()
|
||||
eval.summarize()
|
||||
idx = i * 4 + 2
|
||||
stats[self.metrics.keys[idx + 1]], stats[
|
||||
self.metrics.keys[idx]] = eval.stats[:2] # update mAP50-95 and mAP50
|
||||
except Exception as e:
|
||||
LOGGER.warning(f'pycocotools unable to run: {e}')
|
||||
return stats
|
Reference in New Issue
Block a user