update
This commit is contained in:
158
ytracking/ultralytics/models/sam/build.py
Normal file
158
ytracking/ultralytics/models/sam/build.py
Normal file
@ -0,0 +1,158 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
from functools import partial
|
||||
|
||||
import torch
|
||||
|
||||
from ultralytics.utils.downloads import attempt_download_asset
|
||||
|
||||
from .modules.decoders import MaskDecoder
|
||||
from .modules.encoders import ImageEncoderViT, PromptEncoder
|
||||
from .modules.sam import Sam
|
||||
from .modules.tiny_encoder import TinyViT
|
||||
from .modules.transformer import TwoWayTransformer
|
||||
|
||||
|
||||
def build_sam_vit_h(checkpoint=None):
|
||||
"""Build and return a Segment Anything Model (SAM) h-size model."""
|
||||
return _build_sam(
|
||||
encoder_embed_dim=1280,
|
||||
encoder_depth=32,
|
||||
encoder_num_heads=16,
|
||||
encoder_global_attn_indexes=[7, 15, 23, 31],
|
||||
checkpoint=checkpoint,
|
||||
)
|
||||
|
||||
|
||||
def build_sam_vit_l(checkpoint=None):
|
||||
"""Build and return a Segment Anything Model (SAM) l-size model."""
|
||||
return _build_sam(
|
||||
encoder_embed_dim=1024,
|
||||
encoder_depth=24,
|
||||
encoder_num_heads=16,
|
||||
encoder_global_attn_indexes=[5, 11, 17, 23],
|
||||
checkpoint=checkpoint,
|
||||
)
|
||||
|
||||
|
||||
def build_sam_vit_b(checkpoint=None):
|
||||
"""Build and return a Segment Anything Model (SAM) b-size model."""
|
||||
return _build_sam(
|
||||
encoder_embed_dim=768,
|
||||
encoder_depth=12,
|
||||
encoder_num_heads=12,
|
||||
encoder_global_attn_indexes=[2, 5, 8, 11],
|
||||
checkpoint=checkpoint,
|
||||
)
|
||||
|
||||
|
||||
def build_mobile_sam(checkpoint=None):
|
||||
"""Build and return Mobile Segment Anything Model (Mobile-SAM)."""
|
||||
return _build_sam(
|
||||
encoder_embed_dim=[64, 128, 160, 320],
|
||||
encoder_depth=[2, 2, 6, 2],
|
||||
encoder_num_heads=[2, 4, 5, 10],
|
||||
encoder_global_attn_indexes=None,
|
||||
mobile_sam=True,
|
||||
checkpoint=checkpoint,
|
||||
)
|
||||
|
||||
|
||||
def _build_sam(encoder_embed_dim,
|
||||
encoder_depth,
|
||||
encoder_num_heads,
|
||||
encoder_global_attn_indexes,
|
||||
checkpoint=None,
|
||||
mobile_sam=False):
|
||||
"""Builds the selected SAM model architecture."""
|
||||
prompt_embed_dim = 256
|
||||
image_size = 1024
|
||||
vit_patch_size = 16
|
||||
image_embedding_size = image_size // vit_patch_size
|
||||
image_encoder = (TinyViT(
|
||||
img_size=1024,
|
||||
in_chans=3,
|
||||
num_classes=1000,
|
||||
embed_dims=encoder_embed_dim,
|
||||
depths=encoder_depth,
|
||||
num_heads=encoder_num_heads,
|
||||
window_sizes=[7, 7, 14, 7],
|
||||
mlp_ratio=4.0,
|
||||
drop_rate=0.0,
|
||||
drop_path_rate=0.0,
|
||||
use_checkpoint=False,
|
||||
mbconv_expand_ratio=4.0,
|
||||
local_conv_size=3,
|
||||
layer_lr_decay=0.8,
|
||||
) if mobile_sam else ImageEncoderViT(
|
||||
depth=encoder_depth,
|
||||
embed_dim=encoder_embed_dim,
|
||||
img_size=image_size,
|
||||
mlp_ratio=4,
|
||||
norm_layer=partial(torch.nn.LayerNorm, eps=1e-6),
|
||||
num_heads=encoder_num_heads,
|
||||
patch_size=vit_patch_size,
|
||||
qkv_bias=True,
|
||||
use_rel_pos=True,
|
||||
global_attn_indexes=encoder_global_attn_indexes,
|
||||
window_size=14,
|
||||
out_chans=prompt_embed_dim,
|
||||
))
|
||||
sam = Sam(
|
||||
image_encoder=image_encoder,
|
||||
prompt_encoder=PromptEncoder(
|
||||
embed_dim=prompt_embed_dim,
|
||||
image_embedding_size=(image_embedding_size, image_embedding_size),
|
||||
input_image_size=(image_size, image_size),
|
||||
mask_in_chans=16,
|
||||
),
|
||||
mask_decoder=MaskDecoder(
|
||||
num_multimask_outputs=3,
|
||||
transformer=TwoWayTransformer(
|
||||
depth=2,
|
||||
embedding_dim=prompt_embed_dim,
|
||||
mlp_dim=2048,
|
||||
num_heads=8,
|
||||
),
|
||||
transformer_dim=prompt_embed_dim,
|
||||
iou_head_depth=3,
|
||||
iou_head_hidden_dim=256,
|
||||
),
|
||||
pixel_mean=[123.675, 116.28, 103.53],
|
||||
pixel_std=[58.395, 57.12, 57.375],
|
||||
)
|
||||
if checkpoint is not None:
|
||||
checkpoint = attempt_download_asset(checkpoint)
|
||||
with open(checkpoint, 'rb') as f:
|
||||
state_dict = torch.load(f)
|
||||
sam.load_state_dict(state_dict)
|
||||
sam.eval()
|
||||
# sam.load_state_dict(torch.load(checkpoint), strict=True)
|
||||
# sam.eval()
|
||||
return sam
|
||||
|
||||
|
||||
sam_model_map = {
|
||||
'sam_h.pt': build_sam_vit_h,
|
||||
'sam_l.pt': build_sam_vit_l,
|
||||
'sam_b.pt': build_sam_vit_b,
|
||||
'mobile_sam.pt': build_mobile_sam, }
|
||||
|
||||
|
||||
def build_sam(ckpt='sam_b.pt'):
|
||||
"""Build a SAM model specified by ckpt."""
|
||||
model_builder = None
|
||||
for k in sam_model_map.keys():
|
||||
if ckpt.endswith(k):
|
||||
model_builder = sam_model_map.get(k)
|
||||
|
||||
if not model_builder:
|
||||
raise FileNotFoundError(f'{ckpt} is not a supported sam model. Available models are: \n {sam_model_map.keys()}')
|
||||
|
||||
return model_builder(ckpt)
|
Reference in New Issue
Block a user