update
This commit is contained in:
7
ytracking/ultralytics/models/nas/__init__.py
Normal file
7
ytracking/ultralytics/models/nas/__init__.py
Normal file
@ -0,0 +1,7 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
from .model import NAS
|
||||
from .predict import NASPredictor
|
||||
from .val import NASValidator
|
||||
|
||||
__all__ = 'NASPredictor', 'NASValidator', 'NAS'
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
BIN
ytracking/ultralytics/models/nas/__pycache__/val.cpython-38.pyc
Normal file
BIN
ytracking/ultralytics/models/nas/__pycache__/val.cpython-38.pyc
Normal file
Binary file not shown.
BIN
ytracking/ultralytics/models/nas/__pycache__/val.cpython-39.pyc
Normal file
BIN
ytracking/ultralytics/models/nas/__pycache__/val.cpython-39.pyc
Normal file
Binary file not shown.
61
ytracking/ultralytics/models/nas/model.py
Normal file
61
ytracking/ultralytics/models/nas/model.py
Normal file
@ -0,0 +1,61 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
"""
|
||||
YOLO-NAS model interface.
|
||||
|
||||
Example:
|
||||
```python
|
||||
from ultralytics import NAS
|
||||
|
||||
model = NAS('yolo_nas_s')
|
||||
results = model.predict('ultralytics/assets/bus.jpg')
|
||||
```
|
||||
"""
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
|
||||
from ultralytics.engine.model import Model
|
||||
from ultralytics.utils.torch_utils import model_info, smart_inference_mode
|
||||
|
||||
from .predict import NASPredictor
|
||||
from .val import NASValidator
|
||||
|
||||
|
||||
class NAS(Model):
|
||||
|
||||
def __init__(self, model='yolo_nas_s.pt') -> None:
|
||||
assert Path(model).suffix not in ('.yaml', '.yml'), 'YOLO-NAS models only support pre-trained models.'
|
||||
super().__init__(model, task='detect')
|
||||
|
||||
@smart_inference_mode()
|
||||
def _load(self, weights: str, task: str):
|
||||
# Load or create new NAS model
|
||||
import super_gradients
|
||||
suffix = Path(weights).suffix
|
||||
if suffix == '.pt':
|
||||
self.model = torch.load(weights)
|
||||
elif suffix == '':
|
||||
self.model = super_gradients.training.models.get(weights, pretrained_weights='coco')
|
||||
# Standardize model
|
||||
self.model.fuse = lambda verbose=True: self.model
|
||||
self.model.stride = torch.tensor([32])
|
||||
self.model.names = dict(enumerate(self.model._class_names))
|
||||
self.model.is_fused = lambda: False # for info()
|
||||
self.model.yaml = {} # for info()
|
||||
self.model.pt_path = weights # for export()
|
||||
self.model.task = 'detect' # for export()
|
||||
|
||||
def info(self, detailed=False, verbose=True):
|
||||
"""
|
||||
Logs model info.
|
||||
|
||||
Args:
|
||||
detailed (bool): Show detailed information about model.
|
||||
verbose (bool): Controls verbosity.
|
||||
"""
|
||||
return model_info(self.model, detailed=detailed, verbose=verbose, imgsz=640)
|
||||
|
||||
@property
|
||||
def task_map(self):
|
||||
return {'detect': {'predictor': NASPredictor, 'validator': NASValidator}}
|
35
ytracking/ultralytics/models/nas/predict.py
Normal file
35
ytracking/ultralytics/models/nas/predict.py
Normal file
@ -0,0 +1,35 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
import torch
|
||||
|
||||
from ultralytics.engine.predictor import BasePredictor
|
||||
from ultralytics.engine.results import Results
|
||||
from ultralytics.utils import ops
|
||||
|
||||
|
||||
class NASPredictor(BasePredictor):
|
||||
|
||||
def postprocess(self, preds_in, img, orig_imgs):
|
||||
"""Postprocess predictions and returns a list of Results objects."""
|
||||
|
||||
# Cat boxes and class scores
|
||||
boxes = ops.xyxy2xywh(preds_in[0][0])
|
||||
preds = torch.cat((boxes, preds_in[0][1]), -1).permute(0, 2, 1)
|
||||
|
||||
preds = ops.non_max_suppression(preds,
|
||||
self.args.conf,
|
||||
self.args.iou,
|
||||
agnostic=self.args.agnostic_nms,
|
||||
max_det=self.args.max_det,
|
||||
classes=self.args.classes)
|
||||
|
||||
if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list
|
||||
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
|
||||
|
||||
results = []
|
||||
for i, pred in enumerate(preds):
|
||||
orig_img = orig_imgs[i]
|
||||
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
|
||||
img_path = self.batch[0][i]
|
||||
results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred))
|
||||
return results
|
24
ytracking/ultralytics/models/nas/val.py
Normal file
24
ytracking/ultralytics/models/nas/val.py
Normal file
@ -0,0 +1,24 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
import torch
|
||||
|
||||
from ultralytics.models.yolo.detect import DetectionValidator
|
||||
from ultralytics.utils import ops
|
||||
|
||||
__all__ = ['NASValidator']
|
||||
|
||||
|
||||
class NASValidator(DetectionValidator):
|
||||
|
||||
def postprocess(self, preds_in):
|
||||
"""Apply Non-maximum suppression to prediction outputs."""
|
||||
boxes = ops.xyxy2xywh(preds_in[0][0])
|
||||
preds = torch.cat((boxes, preds_in[0][1]), -1).permute(0, 2, 1)
|
||||
return ops.non_max_suppression(preds,
|
||||
self.args.conf,
|
||||
self.args.iou,
|
||||
labels=self.lb,
|
||||
multi_label=False,
|
||||
agnostic=self.args.single_cls,
|
||||
max_det=self.args.max_det,
|
||||
max_time_img=0.5)
|
Reference in New Issue
Block a user