update
This commit is contained in:
120
ytracking/tracking/trackers/reid/model/resnet_face.py
Normal file
120
ytracking/tracking/trackers/reid/model/resnet_face.py
Normal file
@ -0,0 +1,120 @@
|
||||
""" Resnet_IR_SE in ArcFace """
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
class Flatten(nn.Module):
|
||||
def forward(self, x):
|
||||
return x.reshape(x.shape[0], -1)
|
||||
|
||||
|
||||
class SEConv(nn.Module):
|
||||
"""Use Convolution instead of FullyConnection in SE"""
|
||||
|
||||
def __init__(self, channels, reduction):
|
||||
super().__init__()
|
||||
self.net = nn.Sequential(
|
||||
nn.AdaptiveAvgPool2d(1),
|
||||
nn.Conv2d(channels, channels // reduction, kernel_size=1, bias=False),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.Conv2d(channels // reduction, channels, kernel_size=1, bias=False),
|
||||
nn.Sigmoid(),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.net(x) * x
|
||||
|
||||
|
||||
class SE(nn.Module):
|
||||
|
||||
def __init__(self, channels, reduction):
|
||||
super().__init__()
|
||||
self.net = nn.Sequential(
|
||||
nn.AdaptiveAvgPool2d(1),
|
||||
nn.Linear(channels, channels // reduction),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.Linear(channels // reduction, channels),
|
||||
nn.Sigmoid(),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.net(x) * x
|
||||
|
||||
|
||||
class IRSE(nn.Module):
|
||||
|
||||
def __init__(self, channels, depth, stride):
|
||||
super().__init__()
|
||||
if channels == depth:
|
||||
self.shortcut = nn.MaxPool2d(kernel_size=1, stride=stride)
|
||||
else:
|
||||
self.shortcut = nn.Sequential(
|
||||
nn.Conv2d(channels, depth, (1, 1), stride, bias=False),
|
||||
nn.BatchNorm2d(depth),
|
||||
)
|
||||
self.residual = nn.Sequential(
|
||||
nn.BatchNorm2d(channels),
|
||||
nn.Conv2d(channels, depth, (3, 3), 1, 1, bias=False),
|
||||
nn.PReLU(depth),
|
||||
nn.Conv2d(depth, depth, (3, 3), stride, 1, bias=False),
|
||||
nn.BatchNorm2d(depth),
|
||||
SEConv(depth, 16),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.shortcut(x) + self.residual(x)
|
||||
|
||||
class ResIRSE(nn.Module):
|
||||
"""Resnet50-IRSE backbone"""
|
||||
|
||||
def __init__(self, ih,embedding_size, drop_ratio):
|
||||
super().__init__()
|
||||
ih_last = ih // 16
|
||||
self.input_layer = nn.Sequential(
|
||||
nn.Conv2d(3, 64, (3, 3), 1, 1, bias=False),
|
||||
nn.BatchNorm2d(64),
|
||||
nn.PReLU(64),
|
||||
)
|
||||
self.output_layer = nn.Sequential(
|
||||
nn.BatchNorm2d(512),
|
||||
nn.Dropout(drop_ratio),
|
||||
Flatten(),
|
||||
nn.Linear(512 * ih_last * ih_last, embedding_size),
|
||||
nn.BatchNorm1d(embedding_size),
|
||||
)
|
||||
|
||||
# ["channels", "depth", "stride"],
|
||||
self.res50_arch = [
|
||||
[64, 64, 2], [64, 64, 1], [64, 64, 1],
|
||||
[64, 128, 2], [128, 128, 1], [128, 128, 1], [128, 128, 1],
|
||||
[128, 256, 2], [256, 256, 1], [256, 256, 1], [256, 256, 1], [256, 256, 1],
|
||||
[256, 256, 1], [256, 256, 1], [256, 256, 1], [256, 256, 1], [256, 256, 1],
|
||||
[256, 256, 1], [256, 256, 1], [256, 256, 1], [256, 256, 1],
|
||||
[256, 512, 2], [512, 512, 1], [512, 512, 1],
|
||||
]
|
||||
|
||||
self.body = nn.Sequential(*[ IRSE(a,b,c) for (a,b,c) in self.res50_arch ])
|
||||
|
||||
def forward(self, x):
|
||||
x = self.input_layer(x)
|
||||
x = self.body(x)
|
||||
x = self.output_layer(x)
|
||||
return x
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from PIL import Image
|
||||
import numpy as np
|
||||
|
||||
x = Image.open("../samples/009.jpg").convert('L')
|
||||
x = x.resize((128, 128))
|
||||
x = np.asarray(x, dtype=np.float32)
|
||||
x = x[None, None, ...]
|
||||
x = torch.from_numpy(x)
|
||||
net = ResIRSE(512, 0.6)
|
||||
net.eval()
|
||||
with torch.no_grad():
|
||||
out = net(x)
|
||||
print(out.shape)
|
Reference in New Issue
Block a user