This commit is contained in:
lee
2024-11-27 15:37:10 +08:00
commit 3a5214c796
696 changed files with 56947 additions and 0 deletions

159
ytracking/track_.py Normal file
View File

@ -0,0 +1,159 @@
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
import argparse
import csv
import os
import platform
import sys
from pathlib import Path
import glob
import numpy as np
import pickle
import torch
from tools.config import cfg
sys.path.append('./ytracking')
from models.common import DetectMultiBackend
from utils.dataloaders import LoadImages
from utils.general import (LOGGER, Profile, check_img_size, check_requirements, colorstr, cv2,
increment_path, non_max_suppression, scale_boxes, strip_optimizer)
from utils.torch_utils import select_device, smart_inference_mode
'''集成跟踪模块,输出跟踪结果文件 .npy'''
# from ultralytics.engine.results import Boxes # Results
# from ultralytics.utils import IterableSimpleNamespace, yaml_load
from tracking.utils.plotting import Annotator, colors
from tracking.utils import Boxes, IterableSimpleNamespace, yaml_load
from tracking.trackers import BOTSORT, BYTETracker
from tracking.utils.showtrack import drawtracks
import time
def init_trackers(tracker_yaml=None, bs=1):
"""
Initialize trackers for object tracking during prediction.
"""
# tracker_yaml = r"./tracking/trackers/cfg/botsort.yaml"
TRACKER_MAP = {'bytetrack': BYTETracker, 'botsort': BOTSORT}
cfg = IterableSimpleNamespace(**yaml_load(tracker_yaml))
trackers = []
for _ in range(bs):
tracker = TRACKER_MAP[cfg.tracker_type](args=cfg, frame_rate=30)
trackers.append(tracker)
return trackers
@smart_inference_mode()
def run(
# weights=cfg.tracking_model, # model path or triton URL
Model, # model path or triton URL
source=None, # file/dir/URL/glob/screen/0(webcam)
project=r'./runs/detect', # save results to project/name
tracker_yaml=cfg.botsort,
imgsz=(640, 640), # inference size (height, width)
conf_thres=0.25, # confidence threshold
iou_thres=0.45, # NMS IOU threshold
max_det=1000, # maximum detections per image
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
bs=1, # batch_size
save_img=True, # do not save images/videos
classes=None, # filter by class: --class 0, or --class 0 2 3
agnostic_nms=False, # class-agnostic NMS
augment=False, # augmented inference
visualize=False, # visualize features
line_thickness=3, # bounding box thickness (pixels)
half=False, # use FP16 half-precision inference
dnn=False, # use OpenCV DNN for ONNX inference
vid_stride=1, # video frame-rate stride
):
if source is None:
raise ValueError("Have to provide --source argument")
# Load model
# device = select_device(device)
# model = DetectMultiBackend(weights, device=device, dnn=dnn, fp16=half)
if Model is None:
raise ValueError("Have to provide --model argument")
model = Model.yoloModel
print(model.stride, model.names, model.pt)
stride, names, pt = model.stride, model.names, model.pt
imgsz = check_img_size(imgsz, s=stride) # check image size
# Run inference
model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) # warmup
##=============================生成文件夹 save_dir存储检测跟踪图像
source = str(source)
save_dir = Path(project) / Path(source).stem
# Dataloader
seen, dt = 0, (Profile(), Profile(), Profile())
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
## ================================================= 生成跟踪器对象
tracker = init_trackers(tracker_yaml, bs)[0]
track_boxes = np.empty((0, 9), dtype=np.float32)
features_dict = {}
frameid_img = {}
for path, im, im0s, vid_cap, s in dataset:
# img preprocess
with dt[0]:
im = torch.from_numpy(im).to(model.device)
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
im /= 255 # 0 - 255 to 0.0 - 1.0
if len(im.shape) == 3:
im = im[None] # expand for batch dim
# Inference
with dt[1]:
visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
pred = model(im, augment=augment, visualize=visualize)
# NMS
with dt[2]:
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
# Process predictions
for i, det in enumerate(pred): # per image
seen += 1
frameid_img[seen] = im0s.copy()
p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
s += '%gx%g ' % im.shape[2:] # print string
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()
# boxes_and_imgs.append((det.cpu().numpy(), im0, frame))
## ================================================================ writed by WQG
det_tracking = Boxes(det, im0.shape).cpu().numpy()
tracks = tracker.update(det_tracking, im0)
if len(tracks):
tracks[:, 7] = seen
track_boxes = np.concatenate([track_boxes, tracks], axis=0)
feat_dict = {int(x.idx): x.curr_feat for x in tracker.tracked_stracks if x.is_activated}
frame_id = tracks[0, 7]
features_dict.update({int(frame_id): feat_dict})
return track_boxes, features_dict, frameid_img
def main():
ROOT = Path(Path.cwd())
check_requirements(ROOT / 'requirements.txt', exclude=('tensorboard', 'thop'))
optdict = {'weights': r"D:/Project/ieemoo-ai/tools/ckpts/best_158734_cls11_noaug10.pt",
'source': r"D:/Project/ieemoo-ai/testdata/88.mp4",
}
run(**optdict)
if __name__ == '__main__':
main()