update
This commit is contained in:
159
ytracking/track_.py
Normal file
159
ytracking/track_.py
Normal file
@ -0,0 +1,159 @@
|
||||
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
|
||||
import argparse
|
||||
import csv
|
||||
import os
|
||||
import platform
|
||||
import sys
|
||||
from pathlib import Path
|
||||
import glob
|
||||
import numpy as np
|
||||
import pickle
|
||||
import torch
|
||||
from tools.config import cfg
|
||||
|
||||
sys.path.append('./ytracking')
|
||||
from models.common import DetectMultiBackend
|
||||
from utils.dataloaders import LoadImages
|
||||
from utils.general import (LOGGER, Profile, check_img_size, check_requirements, colorstr, cv2,
|
||||
increment_path, non_max_suppression, scale_boxes, strip_optimizer)
|
||||
from utils.torch_utils import select_device, smart_inference_mode
|
||||
|
||||
'''集成跟踪模块,输出跟踪结果文件 .npy'''
|
||||
# from ultralytics.engine.results import Boxes # Results
|
||||
# from ultralytics.utils import IterableSimpleNamespace, yaml_load
|
||||
from tracking.utils.plotting import Annotator, colors
|
||||
from tracking.utils import Boxes, IterableSimpleNamespace, yaml_load
|
||||
from tracking.trackers import BOTSORT, BYTETracker
|
||||
from tracking.utils.showtrack import drawtracks
|
||||
import time
|
||||
|
||||
|
||||
def init_trackers(tracker_yaml=None, bs=1):
|
||||
"""
|
||||
Initialize trackers for object tracking during prediction.
|
||||
"""
|
||||
# tracker_yaml = r"./tracking/trackers/cfg/botsort.yaml"
|
||||
|
||||
TRACKER_MAP = {'bytetrack': BYTETracker, 'botsort': BOTSORT}
|
||||
cfg = IterableSimpleNamespace(**yaml_load(tracker_yaml))
|
||||
trackers = []
|
||||
for _ in range(bs):
|
||||
tracker = TRACKER_MAP[cfg.tracker_type](args=cfg, frame_rate=30)
|
||||
trackers.append(tracker)
|
||||
|
||||
return trackers
|
||||
|
||||
|
||||
@smart_inference_mode()
|
||||
def run(
|
||||
# weights=cfg.tracking_model, # model path or triton URL
|
||||
Model, # model path or triton URL
|
||||
source=None, # file/dir/URL/glob/screen/0(webcam)
|
||||
|
||||
project=r'./runs/detect', # save results to project/name
|
||||
|
||||
tracker_yaml=cfg.botsort,
|
||||
imgsz=(640, 640), # inference size (height, width)
|
||||
conf_thres=0.25, # confidence threshold
|
||||
iou_thres=0.45, # NMS IOU threshold
|
||||
max_det=1000, # maximum detections per image
|
||||
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
||||
bs=1, # batch_size
|
||||
save_img=True, # do not save images/videos
|
||||
classes=None, # filter by class: --class 0, or --class 0 2 3
|
||||
agnostic_nms=False, # class-agnostic NMS
|
||||
augment=False, # augmented inference
|
||||
visualize=False, # visualize features
|
||||
line_thickness=3, # bounding box thickness (pixels)
|
||||
half=False, # use FP16 half-precision inference
|
||||
dnn=False, # use OpenCV DNN for ONNX inference
|
||||
vid_stride=1, # video frame-rate stride
|
||||
):
|
||||
if source is None:
|
||||
raise ValueError("Have to provide --source argument")
|
||||
|
||||
# Load model
|
||||
# device = select_device(device)
|
||||
# model = DetectMultiBackend(weights, device=device, dnn=dnn, fp16=half)
|
||||
if Model is None:
|
||||
raise ValueError("Have to provide --model argument")
|
||||
model = Model.yoloModel
|
||||
print(model.stride, model.names, model.pt)
|
||||
stride, names, pt = model.stride, model.names, model.pt
|
||||
imgsz = check_img_size(imgsz, s=stride) # check image size
|
||||
|
||||
# Run inference
|
||||
model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) # warmup
|
||||
|
||||
##=============================生成文件夹 save_dir,存储检测跟踪图像
|
||||
source = str(source)
|
||||
save_dir = Path(project) / Path(source).stem
|
||||
|
||||
# Dataloader
|
||||
seen, dt = 0, (Profile(), Profile(), Profile())
|
||||
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
|
||||
|
||||
## ================================================= 生成跟踪器对象
|
||||
tracker = init_trackers(tracker_yaml, bs)[0]
|
||||
track_boxes = np.empty((0, 9), dtype=np.float32)
|
||||
features_dict = {}
|
||||
frameid_img = {}
|
||||
|
||||
for path, im, im0s, vid_cap, s in dataset:
|
||||
# img preprocess
|
||||
with dt[0]:
|
||||
im = torch.from_numpy(im).to(model.device)
|
||||
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
|
||||
im /= 255 # 0 - 255 to 0.0 - 1.0
|
||||
if len(im.shape) == 3:
|
||||
im = im[None] # expand for batch dim
|
||||
|
||||
# Inference
|
||||
with dt[1]:
|
||||
visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
|
||||
pred = model(im, augment=augment, visualize=visualize)
|
||||
|
||||
# NMS
|
||||
with dt[2]:
|
||||
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
|
||||
|
||||
# Process predictions
|
||||
for i, det in enumerate(pred): # per image
|
||||
seen += 1
|
||||
frameid_img[seen] = im0s.copy()
|
||||
|
||||
p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
|
||||
|
||||
s += '%gx%g ' % im.shape[2:] # print string
|
||||
|
||||
if len(det):
|
||||
# Rescale boxes from img_size to im0 size
|
||||
det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()
|
||||
|
||||
# boxes_and_imgs.append((det.cpu().numpy(), im0, frame))
|
||||
## ================================================================ writed by WQG
|
||||
det_tracking = Boxes(det, im0.shape).cpu().numpy()
|
||||
tracks = tracker.update(det_tracking, im0)
|
||||
|
||||
if len(tracks):
|
||||
tracks[:, 7] = seen
|
||||
track_boxes = np.concatenate([track_boxes, tracks], axis=0)
|
||||
feat_dict = {int(x.idx): x.curr_feat for x in tracker.tracked_stracks if x.is_activated}
|
||||
frame_id = tracks[0, 7]
|
||||
features_dict.update({int(frame_id): feat_dict})
|
||||
|
||||
return track_boxes, features_dict, frameid_img
|
||||
|
||||
|
||||
def main():
|
||||
ROOT = Path(Path.cwd())
|
||||
check_requirements(ROOT / 'requirements.txt', exclude=('tensorboard', 'thop'))
|
||||
|
||||
optdict = {'weights': r"D:/Project/ieemoo-ai/tools/ckpts/best_158734_cls11_noaug10.pt",
|
||||
'source': r"D:/Project/ieemoo-ai/testdata/88.mp4",
|
||||
}
|
||||
run(**optdict)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
Reference in New Issue
Block a user