update
This commit is contained in:
60
contrast/README.md
Normal file
60
contrast/README.md
Normal file
@ -0,0 +1,60 @@
|
||||
# Build Your Own Face Recognition Model
|
||||
|
||||
训练你自己的人脸识别模型!
|
||||
|
||||
人脸识别从原始的 Softmax Embbedding,经过2015年 Facenet 领衔的 triple loss metric learning,然后是 additional margin metric learning。这次的系列博客实现的是2018年提出的 ArcFace 。
|
||||
|
||||
|
||||
### 依赖
|
||||
```py
|
||||
Python >= 3.6
|
||||
pytorch >= 1.0
|
||||
torchvision
|
||||
imutils
|
||||
pillow == 6.2.0
|
||||
tqdm
|
||||
```
|
||||
|
||||
### 数据准备
|
||||
|
||||
+ 下载WebFace(百度一下)以及干净的图片列表([BaiduYun](http://pan.baidu.com/s/1hrKpbm8))用于训练
|
||||
+ 下载LFW([BaiduYun](https://pan.baidu.com/s/12IKEpvM8-tYgSaUiz_adGA) 提取码 u7z4)以及[测试列表](https://github.com/ronghuaiyang/arcface-pytorch/blob/master/lfw_test_pair.txt)用于测试
|
||||
+ 删除WebFace中的脏数据,使用`utils.py`
|
||||
|
||||
### 配置参数
|
||||
|
||||
见`config.py`
|
||||
|
||||
### 训练
|
||||
|
||||
天然支持单机多GPU训练
|
||||
|
||||
```py
|
||||
export CUDA_VISIBLE_DEVICES=0,1
|
||||
python train.py
|
||||
```
|
||||
|
||||
### 测试
|
||||
|
||||
```py
|
||||
python test.py
|
||||
```
|
||||
|
||||
### 博客
|
||||
|
||||
虽然有关人脸识别的介绍已经很多了,但受到许多 [Build-Your-Own-x](https://github.com/danistefanovic/build-your-own-x) 文章的启发,就想写一个 Build Your Own Face Model 的博客,愿于他人有益。
|
||||
|
||||
+ 001 [数据准备](./blog/data.md)
|
||||
+ 002 [模型架构](./blog/model.md)
|
||||
+ 003 [损失函数](./blog/loss.md)
|
||||
+ 004 [度量函数](./blog/metric.md)
|
||||
+ 005 [训练](./blog/train.md)
|
||||
+ 006 [测试](./blog/test.md)
|
||||
|
||||
### 致谢
|
||||
|
||||
虽然并未注明,但本项目中有一些代码直接复制或者修改自以下仓库,许可证与之相同:
|
||||
|
||||
+ [insightFace](https://github.com/deepinsight/insightface/tree/master/recognition)
|
||||
+ [insightFace_Pytorch](https://github.com/TreB1eN/InsightFace_Pytorch)
|
||||
+ [arcface-pytorch](https://github.com/ronghuaiyang/arcface-pytorch)
|
Reference in New Issue
Block a user