from ultralytics import YOLOv10 # model = YOLOv10() #model = YOLOv10('ultralytics/cfg/models/v10/yolov10s.yaml') #model = YOLOv10('runs/detect/runs_1010_1205_width0.375/weights/last.pt') #model = YOLOv10('runs/detect/train4/weights/last.pt') model = YOLOv10('ckpts/weights/yolov10n.pt') # If you want to finetune the model with pretrained weights, you could load the # pretrained weights like below # model = YOLOv10.from_pretrained('jameslahm/yolov10{n/s/m/b/l/x}') # or # wget https://github.com/THU-MIG/yolov10/releases/download/v1.1/yolov10{n/s/m/b/l/x}.pt # model = YOLOv10('yolov10{n/s/m/b/l/x}.pt') # model = YOLOv10('yolov10s.pt') #model.train(data='coco.yaml', epochs=1, batch=64, imgsz=640) #model.train(data='coco128_cls10_0924.yaml', epochs=300, batch=64, imgsz=640, resume=False) #model.train(data='coco128_cls10_1010.yaml', epochs=300, batch=128, imgsz=640, resume=False) model.train(data='gift.yaml', epochs=600, batch=32, imgsz=224, resume=False, save_dir='/ckpts') #model.train(data='coco128_cls10_1010_1205.yaml', epochs=300, batch=32, imgsz=640, resume=True)