mirror of
https://gitee.com/nanjing-yimao-information/ieemoo-ai-gift.git
synced 2025-08-20 06:10:26 +00:00
update
This commit is contained in:
148
ultralytics/utils/tuner.py
Normal file
148
ultralytics/utils/tuner.py
Normal file
@ -0,0 +1,148 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
import subprocess
|
||||
|
||||
from ultralytics.cfg import TASK2DATA, TASK2METRIC, get_save_dir
|
||||
from ultralytics.utils import DEFAULT_CFG, DEFAULT_CFG_DICT, LOGGER, NUM_THREADS, checks
|
||||
|
||||
|
||||
def run_ray_tune(
|
||||
model, space: dict = None, grace_period: int = 10, gpu_per_trial: int = None, max_samples: int = 10, **train_args
|
||||
):
|
||||
"""
|
||||
Runs hyperparameter tuning using Ray Tune.
|
||||
|
||||
Args:
|
||||
model (YOLO): Model to run the tuner on.
|
||||
space (dict, optional): The hyperparameter search space. Defaults to None.
|
||||
grace_period (int, optional): The grace period in epochs of the ASHA scheduler. Defaults to 10.
|
||||
gpu_per_trial (int, optional): The number of GPUs to allocate per trial. Defaults to None.
|
||||
max_samples (int, optional): The maximum number of trials to run. Defaults to 10.
|
||||
train_args (dict, optional): Additional arguments to pass to the `train()` method. Defaults to {}.
|
||||
|
||||
Returns:
|
||||
(dict): A dictionary containing the results of the hyperparameter search.
|
||||
|
||||
Example:
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
# Load a YOLOv8n model
|
||||
model = YOLO('yolov8n.pt')
|
||||
|
||||
# Start tuning hyperparameters for YOLOv8n training on the COCO8 dataset
|
||||
result_grid = model.tune(data='coco8.yaml', use_ray=True)
|
||||
```
|
||||
"""
|
||||
|
||||
LOGGER.info("💡 Learn about RayTune at https://docs.ultralytics.com/integrations/ray-tune")
|
||||
if train_args is None:
|
||||
train_args = {}
|
||||
|
||||
try:
|
||||
subprocess.run("pip install ray[tune]<=2.9.3".split(), check=True) # do not add single quotes here
|
||||
|
||||
import ray
|
||||
from ray import tune
|
||||
from ray.air import RunConfig
|
||||
from ray.air.integrations.wandb import WandbLoggerCallback
|
||||
from ray.tune.schedulers import ASHAScheduler
|
||||
except ImportError:
|
||||
raise ModuleNotFoundError('Ray Tune required but not found. To install run: pip install "ray[tune]<=2.9.3"')
|
||||
|
||||
try:
|
||||
import wandb
|
||||
|
||||
assert hasattr(wandb, "__version__")
|
||||
except (ImportError, AssertionError):
|
||||
wandb = False
|
||||
|
||||
checks.check_version(ray.__version__, "<=2.9.3", "ray")
|
||||
default_space = {
|
||||
# 'optimizer': tune.choice(['SGD', 'Adam', 'AdamW', 'NAdam', 'RAdam', 'RMSProp']),
|
||||
"lr0": tune.uniform(1e-5, 1e-1),
|
||||
"lrf": tune.uniform(0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
|
||||
"momentum": tune.uniform(0.6, 0.98), # SGD momentum/Adam beta1
|
||||
"weight_decay": tune.uniform(0.0, 0.001), # optimizer weight decay 5e-4
|
||||
"warmup_epochs": tune.uniform(0.0, 5.0), # warmup epochs (fractions ok)
|
||||
"warmup_momentum": tune.uniform(0.0, 0.95), # warmup initial momentum
|
||||
"box": tune.uniform(0.02, 0.2), # box loss gain
|
||||
"cls": tune.uniform(0.2, 4.0), # cls loss gain (scale with pixels)
|
||||
"hsv_h": tune.uniform(0.0, 0.1), # image HSV-Hue augmentation (fraction)
|
||||
"hsv_s": tune.uniform(0.0, 0.9), # image HSV-Saturation augmentation (fraction)
|
||||
"hsv_v": tune.uniform(0.0, 0.9), # image HSV-Value augmentation (fraction)
|
||||
"degrees": tune.uniform(0.0, 45.0), # image rotation (+/- deg)
|
||||
"translate": tune.uniform(0.0, 0.9), # image translation (+/- fraction)
|
||||
"scale": tune.uniform(0.0, 0.9), # image scale (+/- gain)
|
||||
"shear": tune.uniform(0.0, 10.0), # image shear (+/- deg)
|
||||
"perspective": tune.uniform(0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
|
||||
"flipud": tune.uniform(0.0, 1.0), # image flip up-down (probability)
|
||||
"fliplr": tune.uniform(0.0, 1.0), # image flip left-right (probability)
|
||||
"bgr": tune.uniform(0.0, 1.0), # image channel BGR (probability)
|
||||
"mosaic": tune.uniform(0.0, 1.0), # image mixup (probability)
|
||||
"mixup": tune.uniform(0.0, 1.0), # image mixup (probability)
|
||||
"copy_paste": tune.uniform(0.0, 1.0), # segment copy-paste (probability)
|
||||
}
|
||||
|
||||
# Put the model in ray store
|
||||
task = model.task
|
||||
model_in_store = ray.put(model)
|
||||
|
||||
def _tune(config):
|
||||
"""
|
||||
Trains the YOLO model with the specified hyperparameters and additional arguments.
|
||||
|
||||
Args:
|
||||
config (dict): A dictionary of hyperparameters to use for training.
|
||||
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
model_to_train = ray.get(model_in_store) # get the model from ray store for tuning
|
||||
model_to_train.reset_callbacks()
|
||||
config.update(train_args)
|
||||
results = model_to_train.train(**config)
|
||||
return results.results_dict
|
||||
|
||||
# Get search space
|
||||
if not space:
|
||||
space = default_space
|
||||
LOGGER.warning("WARNING ⚠️ search space not provided, using default search space.")
|
||||
|
||||
# Get dataset
|
||||
data = train_args.get("data", TASK2DATA[task])
|
||||
space["data"] = data
|
||||
if "data" not in train_args:
|
||||
LOGGER.warning(f'WARNING ⚠️ data not provided, using default "data={data}".')
|
||||
|
||||
# Define the trainable function with allocated resources
|
||||
trainable_with_resources = tune.with_resources(_tune, {"cpu": NUM_THREADS, "gpu": gpu_per_trial or 0})
|
||||
|
||||
# Define the ASHA scheduler for hyperparameter search
|
||||
asha_scheduler = ASHAScheduler(
|
||||
time_attr="epoch",
|
||||
metric=TASK2METRIC[task],
|
||||
mode="max",
|
||||
max_t=train_args.get("epochs") or DEFAULT_CFG_DICT["epochs"] or 100,
|
||||
grace_period=grace_period,
|
||||
reduction_factor=3,
|
||||
)
|
||||
|
||||
# Define the callbacks for the hyperparameter search
|
||||
tuner_callbacks = [WandbLoggerCallback(project="YOLOv8-tune")] if wandb else []
|
||||
|
||||
# Create the Ray Tune hyperparameter search tuner
|
||||
tune_dir = get_save_dir(DEFAULT_CFG, name="tune").resolve() # must be absolute dir
|
||||
tune_dir.mkdir(parents=True, exist_ok=True)
|
||||
tuner = tune.Tuner(
|
||||
trainable_with_resources,
|
||||
param_space=space,
|
||||
tune_config=tune.TuneConfig(scheduler=asha_scheduler, num_samples=max_samples),
|
||||
run_config=RunConfig(callbacks=tuner_callbacks, storage_path=tune_dir),
|
||||
)
|
||||
|
||||
# Run the hyperparameter search
|
||||
tuner.fit()
|
||||
|
||||
# Return the results of the hyperparameter search
|
||||
return tuner.get_results()
|
Reference in New Issue
Block a user