mirror of
https://gitee.com/nanjing-yimao-information/ieemoo-ai-gift.git
synced 2025-08-19 22:00:25 +00:00
update
This commit is contained in:
29
ultralytics/nn/__init__.py
Normal file
29
ultralytics/nn/__init__.py
Normal file
@ -0,0 +1,29 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
from .tasks import (
|
||||
BaseModel,
|
||||
ClassificationModel,
|
||||
DetectionModel,
|
||||
SegmentationModel,
|
||||
attempt_load_one_weight,
|
||||
attempt_load_weights,
|
||||
guess_model_scale,
|
||||
guess_model_task,
|
||||
parse_model,
|
||||
torch_safe_load,
|
||||
yaml_model_load,
|
||||
)
|
||||
|
||||
__all__ = (
|
||||
"attempt_load_one_weight",
|
||||
"attempt_load_weights",
|
||||
"parse_model",
|
||||
"yaml_model_load",
|
||||
"guess_model_task",
|
||||
"guess_model_scale",
|
||||
"torch_safe_load",
|
||||
"DetectionModel",
|
||||
"SegmentationModel",
|
||||
"ClassificationModel",
|
||||
"BaseModel",
|
||||
)
|
620
ultralytics/nn/autobackend.py
Normal file
620
ultralytics/nn/autobackend.py
Normal file
@ -0,0 +1,620 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
import ast
|
||||
import contextlib
|
||||
import json
|
||||
import platform
|
||||
import zipfile
|
||||
from collections import OrderedDict, namedtuple
|
||||
from pathlib import Path
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from PIL import Image
|
||||
|
||||
from ultralytics.utils import ARM64, LINUX, LOGGER, ROOT, yaml_load
|
||||
from ultralytics.utils.checks import check_requirements, check_suffix, check_version, check_yaml
|
||||
from ultralytics.utils.downloads import attempt_download_asset, is_url
|
||||
|
||||
|
||||
def check_class_names(names):
|
||||
"""
|
||||
Check class names.
|
||||
|
||||
Map imagenet class codes to human-readable names if required. Convert lists to dicts.
|
||||
"""
|
||||
if isinstance(names, list): # names is a list
|
||||
names = dict(enumerate(names)) # convert to dict
|
||||
if isinstance(names, dict):
|
||||
# Convert 1) string keys to int, i.e. '0' to 0, and non-string values to strings, i.e. True to 'True'
|
||||
names = {int(k): str(v) for k, v in names.items()}
|
||||
n = len(names)
|
||||
if max(names.keys()) >= n:
|
||||
raise KeyError(
|
||||
f"{n}-class dataset requires class indices 0-{n - 1}, but you have invalid class indices "
|
||||
f"{min(names.keys())}-{max(names.keys())} defined in your dataset YAML."
|
||||
)
|
||||
if isinstance(names[0], str) and names[0].startswith("n0"): # imagenet class codes, i.e. 'n01440764'
|
||||
names_map = yaml_load(ROOT / "cfg/datasets/ImageNet.yaml")["map"] # human-readable names
|
||||
names = {k: names_map[v] for k, v in names.items()}
|
||||
return names
|
||||
|
||||
|
||||
def default_class_names(data=None):
|
||||
"""Applies default class names to an input YAML file or returns numerical class names."""
|
||||
if data:
|
||||
with contextlib.suppress(Exception):
|
||||
return yaml_load(check_yaml(data))["names"]
|
||||
return {i: f"class{i}" for i in range(999)} # return default if above errors
|
||||
|
||||
|
||||
class AutoBackend(nn.Module):
|
||||
"""
|
||||
Handles dynamic backend selection for running inference using Ultralytics YOLO models.
|
||||
|
||||
The AutoBackend class is designed to provide an abstraction layer for various inference engines. It supports a wide
|
||||
range of formats, each with specific naming conventions as outlined below:
|
||||
|
||||
Supported Formats and Naming Conventions:
|
||||
| Format | File Suffix |
|
||||
|-----------------------|------------------|
|
||||
| PyTorch | *.pt |
|
||||
| TorchScript | *.torchscript |
|
||||
| ONNX Runtime | *.onnx |
|
||||
| ONNX OpenCV DNN | *.onnx (dnn=True)|
|
||||
| OpenVINO | *openvino_model/ |
|
||||
| CoreML | *.mlpackage |
|
||||
| TensorRT | *.engine |
|
||||
| TensorFlow SavedModel | *_saved_model |
|
||||
| TensorFlow GraphDef | *.pb |
|
||||
| TensorFlow Lite | *.tflite |
|
||||
| TensorFlow Edge TPU | *_edgetpu.tflite |
|
||||
| PaddlePaddle | *_paddle_model |
|
||||
| NCNN | *_ncnn_model |
|
||||
|
||||
This class offers dynamic backend switching capabilities based on the input model format, making it easier to deploy
|
||||
models across various platforms.
|
||||
"""
|
||||
|
||||
@torch.no_grad()
|
||||
def __init__(
|
||||
self,
|
||||
weights="yolov8n.pt",
|
||||
device=torch.device("cpu"),
|
||||
dnn=False,
|
||||
data=None,
|
||||
fp16=False,
|
||||
batch=1,
|
||||
fuse=True,
|
||||
verbose=True,
|
||||
):
|
||||
"""
|
||||
Initialize the AutoBackend for inference.
|
||||
|
||||
Args:
|
||||
weights (str): Path to the model weights file. Defaults to 'yolov8n.pt'.
|
||||
device (torch.device): Device to run the model on. Defaults to CPU.
|
||||
dnn (bool): Use OpenCV DNN module for ONNX inference. Defaults to False.
|
||||
data (str | Path | optional): Path to the additional data.yaml file containing class names. Optional.
|
||||
fp16 (bool): Enable half-precision inference. Supported only on specific backends. Defaults to False.
|
||||
batch (int): Batch-size to assume for inference.
|
||||
fuse (bool): Fuse Conv2D + BatchNorm layers for optimization. Defaults to True.
|
||||
verbose (bool): Enable verbose logging. Defaults to True.
|
||||
"""
|
||||
super().__init__()
|
||||
w = str(weights[0] if isinstance(weights, list) else weights)
|
||||
nn_module = isinstance(weights, torch.nn.Module)
|
||||
(
|
||||
pt,
|
||||
jit,
|
||||
onnx,
|
||||
xml,
|
||||
engine,
|
||||
coreml,
|
||||
saved_model,
|
||||
pb,
|
||||
tflite,
|
||||
edgetpu,
|
||||
tfjs,
|
||||
paddle,
|
||||
ncnn,
|
||||
triton,
|
||||
) = self._model_type(w)
|
||||
fp16 &= pt or jit or onnx or xml or engine or nn_module or triton # FP16
|
||||
nhwc = coreml or saved_model or pb or tflite or edgetpu # BHWC formats (vs torch BCWH)
|
||||
stride = 32 # default stride
|
||||
model, metadata = None, None
|
||||
|
||||
# Set device
|
||||
cuda = torch.cuda.is_available() and device.type != "cpu" # use CUDA
|
||||
if cuda and not any([nn_module, pt, jit, engine, onnx]): # GPU dataloader formats
|
||||
device = torch.device("cpu")
|
||||
cuda = False
|
||||
|
||||
# Download if not local
|
||||
if not (pt or triton or nn_module):
|
||||
w = attempt_download_asset(w)
|
||||
|
||||
# In-memory PyTorch model
|
||||
if nn_module:
|
||||
model = weights.to(device)
|
||||
model = model.fuse(verbose=verbose) if fuse else model
|
||||
if hasattr(model, "kpt_shape"):
|
||||
kpt_shape = model.kpt_shape # pose-only
|
||||
stride = max(int(model.stride.max()), 32) # model stride
|
||||
names = model.module.names if hasattr(model, "module") else model.names # get class names
|
||||
model.half() if fp16 else model.float()
|
||||
self.model = model # explicitly assign for to(), cpu(), cuda(), half()
|
||||
pt = True
|
||||
|
||||
# PyTorch
|
||||
elif pt:
|
||||
from ultralytics.nn.tasks import attempt_load_weights
|
||||
|
||||
model = attempt_load_weights(
|
||||
weights if isinstance(weights, list) else w, device=device, inplace=True, fuse=fuse
|
||||
)
|
||||
if hasattr(model, "kpt_shape"):
|
||||
kpt_shape = model.kpt_shape # pose-only
|
||||
stride = max(int(model.stride.max()), 32) # model stride
|
||||
names = model.module.names if hasattr(model, "module") else model.names # get class names
|
||||
model.half() if fp16 else model.float()
|
||||
self.model = model # explicitly assign for to(), cpu(), cuda(), half()
|
||||
|
||||
# TorchScript
|
||||
elif jit:
|
||||
LOGGER.info(f"Loading {w} for TorchScript inference...")
|
||||
extra_files = {"config.txt": ""} # model metadata
|
||||
model = torch.jit.load(w, _extra_files=extra_files, map_location=device)
|
||||
model.half() if fp16 else model.float()
|
||||
if extra_files["config.txt"]: # load metadata dict
|
||||
metadata = json.loads(extra_files["config.txt"], object_hook=lambda x: dict(x.items()))
|
||||
|
||||
# ONNX OpenCV DNN
|
||||
elif dnn:
|
||||
LOGGER.info(f"Loading {w} for ONNX OpenCV DNN inference...")
|
||||
check_requirements("opencv-python>=4.5.4")
|
||||
net = cv2.dnn.readNetFromONNX(w)
|
||||
|
||||
# ONNX Runtime
|
||||
elif onnx:
|
||||
LOGGER.info(f"Loading {w} for ONNX Runtime inference...")
|
||||
check_requirements(("onnx", "onnxruntime-gpu" if cuda else "onnxruntime"))
|
||||
import onnxruntime
|
||||
|
||||
providers = ["CUDAExecutionProvider", "CPUExecutionProvider"] if cuda else ["CPUExecutionProvider"]
|
||||
session = onnxruntime.InferenceSession(w, providers=providers)
|
||||
output_names = [x.name for x in session.get_outputs()]
|
||||
metadata = session.get_modelmeta().custom_metadata_map
|
||||
|
||||
# OpenVINO
|
||||
elif xml:
|
||||
LOGGER.info(f"Loading {w} for OpenVINO inference...")
|
||||
check_requirements("openvino>=2024.0.0")
|
||||
import openvino as ov
|
||||
|
||||
core = ov.Core()
|
||||
w = Path(w)
|
||||
if not w.is_file(): # if not *.xml
|
||||
w = next(w.glob("*.xml")) # get *.xml file from *_openvino_model dir
|
||||
ov_model = core.read_model(model=str(w), weights=w.with_suffix(".bin"))
|
||||
if ov_model.get_parameters()[0].get_layout().empty:
|
||||
ov_model.get_parameters()[0].set_layout(ov.Layout("NCHW"))
|
||||
|
||||
# OpenVINO inference modes are 'LATENCY', 'THROUGHPUT' (not recommended), or 'CUMULATIVE_THROUGHPUT'
|
||||
inference_mode = "CUMULATIVE_THROUGHPUT" if batch > 1 else "LATENCY"
|
||||
LOGGER.info(f"Using OpenVINO {inference_mode} mode for batch={batch} inference...")
|
||||
ov_compiled_model = core.compile_model(
|
||||
ov_model,
|
||||
device_name="AUTO", # AUTO selects best available device, do not modify
|
||||
config={"PERFORMANCE_HINT": inference_mode},
|
||||
)
|
||||
input_name = ov_compiled_model.input().get_any_name()
|
||||
metadata = w.parent / "metadata.yaml"
|
||||
|
||||
# TensorRT
|
||||
elif engine:
|
||||
LOGGER.info(f"Loading {w} for TensorRT inference...")
|
||||
try:
|
||||
import tensorrt as trt # noqa https://developer.nvidia.com/nvidia-tensorrt-download
|
||||
except ImportError:
|
||||
if LINUX:
|
||||
check_requirements("nvidia-tensorrt", cmds="-U --index-url https://pypi.ngc.nvidia.com")
|
||||
import tensorrt as trt # noqa
|
||||
check_version(trt.__version__, "7.0.0", hard=True) # require tensorrt>=7.0.0
|
||||
if device.type == "cpu":
|
||||
device = torch.device("cuda:0")
|
||||
Binding = namedtuple("Binding", ("name", "dtype", "shape", "data", "ptr"))
|
||||
logger = trt.Logger(trt.Logger.INFO)
|
||||
# Read file
|
||||
with open(w, "rb") as f, trt.Runtime(logger) as runtime:
|
||||
meta_len = int.from_bytes(f.read(4), byteorder="little") # read metadata length
|
||||
metadata = json.loads(f.read(meta_len).decode("utf-8")) # read metadata
|
||||
model = runtime.deserialize_cuda_engine(f.read()) # read engine
|
||||
context = model.create_execution_context()
|
||||
bindings = OrderedDict()
|
||||
output_names = []
|
||||
fp16 = False # default updated below
|
||||
dynamic = False
|
||||
for i in range(model.num_bindings):
|
||||
name = model.get_binding_name(i)
|
||||
dtype = trt.nptype(model.get_binding_dtype(i))
|
||||
if model.binding_is_input(i):
|
||||
if -1 in tuple(model.get_binding_shape(i)): # dynamic
|
||||
dynamic = True
|
||||
context.set_binding_shape(i, tuple(model.get_profile_shape(0, i)[2]))
|
||||
if dtype == np.float16:
|
||||
fp16 = True
|
||||
else: # output
|
||||
output_names.append(name)
|
||||
shape = tuple(context.get_binding_shape(i))
|
||||
im = torch.from_numpy(np.empty(shape, dtype=dtype)).to(device)
|
||||
bindings[name] = Binding(name, dtype, shape, im, int(im.data_ptr()))
|
||||
binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items())
|
||||
batch_size = bindings["images"].shape[0] # if dynamic, this is instead max batch size
|
||||
|
||||
# CoreML
|
||||
elif coreml:
|
||||
LOGGER.info(f"Loading {w} for CoreML inference...")
|
||||
import coremltools as ct
|
||||
|
||||
model = ct.models.MLModel(w)
|
||||
metadata = dict(model.user_defined_metadata)
|
||||
|
||||
# TF SavedModel
|
||||
elif saved_model:
|
||||
LOGGER.info(f"Loading {w} for TensorFlow SavedModel inference...")
|
||||
import tensorflow as tf
|
||||
|
||||
keras = False # assume TF1 saved_model
|
||||
model = tf.keras.models.load_model(w) if keras else tf.saved_model.load(w)
|
||||
metadata = Path(w) / "metadata.yaml"
|
||||
|
||||
# TF GraphDef
|
||||
elif pb: # https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt
|
||||
LOGGER.info(f"Loading {w} for TensorFlow GraphDef inference...")
|
||||
import tensorflow as tf
|
||||
|
||||
from ultralytics.engine.exporter import gd_outputs
|
||||
|
||||
def wrap_frozen_graph(gd, inputs, outputs):
|
||||
"""Wrap frozen graphs for deployment."""
|
||||
x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=""), []) # wrapped
|
||||
ge = x.graph.as_graph_element
|
||||
return x.prune(tf.nest.map_structure(ge, inputs), tf.nest.map_structure(ge, outputs))
|
||||
|
||||
gd = tf.Graph().as_graph_def() # TF GraphDef
|
||||
with open(w, "rb") as f:
|
||||
gd.ParseFromString(f.read())
|
||||
frozen_func = wrap_frozen_graph(gd, inputs="x:0", outputs=gd_outputs(gd))
|
||||
|
||||
# TFLite or TFLite Edge TPU
|
||||
elif tflite or edgetpu: # https://www.tensorflow.org/lite/guide/python#install_tensorflow_lite_for_python
|
||||
try: # https://coral.ai/docs/edgetpu/tflite-python/#update-existing-tf-lite-code-for-the-edge-tpu
|
||||
from tflite_runtime.interpreter import Interpreter, load_delegate
|
||||
except ImportError:
|
||||
import tensorflow as tf
|
||||
|
||||
Interpreter, load_delegate = tf.lite.Interpreter, tf.lite.experimental.load_delegate
|
||||
if edgetpu: # TF Edge TPU https://coral.ai/software/#edgetpu-runtime
|
||||
LOGGER.info(f"Loading {w} for TensorFlow Lite Edge TPU inference...")
|
||||
delegate = {"Linux": "libedgetpu.so.1", "Darwin": "libedgetpu.1.dylib", "Windows": "edgetpu.dll"}[
|
||||
platform.system()
|
||||
]
|
||||
interpreter = Interpreter(model_path=w, experimental_delegates=[load_delegate(delegate)])
|
||||
else: # TFLite
|
||||
LOGGER.info(f"Loading {w} for TensorFlow Lite inference...")
|
||||
interpreter = Interpreter(model_path=w) # load TFLite model
|
||||
interpreter.allocate_tensors() # allocate
|
||||
input_details = interpreter.get_input_details() # inputs
|
||||
output_details = interpreter.get_output_details() # outputs
|
||||
# Load metadata
|
||||
with contextlib.suppress(zipfile.BadZipFile):
|
||||
with zipfile.ZipFile(w, "r") as model:
|
||||
meta_file = model.namelist()[0]
|
||||
metadata = ast.literal_eval(model.read(meta_file).decode("utf-8"))
|
||||
|
||||
# TF.js
|
||||
elif tfjs:
|
||||
raise NotImplementedError("YOLOv8 TF.js inference is not currently supported.")
|
||||
|
||||
# PaddlePaddle
|
||||
elif paddle:
|
||||
LOGGER.info(f"Loading {w} for PaddlePaddle inference...")
|
||||
check_requirements("paddlepaddle-gpu" if cuda else "paddlepaddle")
|
||||
import paddle.inference as pdi # noqa
|
||||
|
||||
w = Path(w)
|
||||
if not w.is_file(): # if not *.pdmodel
|
||||
w = next(w.rglob("*.pdmodel")) # get *.pdmodel file from *_paddle_model dir
|
||||
config = pdi.Config(str(w), str(w.with_suffix(".pdiparams")))
|
||||
if cuda:
|
||||
config.enable_use_gpu(memory_pool_init_size_mb=2048, device_id=0)
|
||||
predictor = pdi.create_predictor(config)
|
||||
input_handle = predictor.get_input_handle(predictor.get_input_names()[0])
|
||||
output_names = predictor.get_output_names()
|
||||
metadata = w.parents[1] / "metadata.yaml"
|
||||
|
||||
# NCNN
|
||||
elif ncnn:
|
||||
LOGGER.info(f"Loading {w} for NCNN inference...")
|
||||
check_requirements("git+https://github.com/Tencent/ncnn.git" if ARM64 else "ncnn") # requires NCNN
|
||||
import ncnn as pyncnn
|
||||
|
||||
net = pyncnn.Net()
|
||||
net.opt.use_vulkan_compute = cuda
|
||||
w = Path(w)
|
||||
if not w.is_file(): # if not *.param
|
||||
w = next(w.glob("*.param")) # get *.param file from *_ncnn_model dir
|
||||
net.load_param(str(w))
|
||||
net.load_model(str(w.with_suffix(".bin")))
|
||||
metadata = w.parent / "metadata.yaml"
|
||||
|
||||
# NVIDIA Triton Inference Server
|
||||
elif triton:
|
||||
check_requirements("tritonclient[all]")
|
||||
from ultralytics.utils.triton import TritonRemoteModel
|
||||
|
||||
model = TritonRemoteModel(w)
|
||||
|
||||
# Any other format (unsupported)
|
||||
else:
|
||||
from ultralytics.engine.exporter import export_formats
|
||||
|
||||
raise TypeError(
|
||||
f"model='{w}' is not a supported model format. "
|
||||
f"See https://docs.ultralytics.com/modes/predict for help.\n\n{export_formats()}"
|
||||
)
|
||||
|
||||
# Load external metadata YAML
|
||||
if isinstance(metadata, (str, Path)) and Path(metadata).exists():
|
||||
metadata = yaml_load(metadata)
|
||||
if metadata:
|
||||
for k, v in metadata.items():
|
||||
if k in ("stride", "batch"):
|
||||
metadata[k] = int(v)
|
||||
elif k in ("imgsz", "names", "kpt_shape") and isinstance(v, str):
|
||||
metadata[k] = eval(v)
|
||||
stride = metadata["stride"]
|
||||
task = metadata["task"]
|
||||
batch = metadata["batch"]
|
||||
imgsz = metadata["imgsz"]
|
||||
names = metadata["names"]
|
||||
kpt_shape = metadata.get("kpt_shape")
|
||||
elif not (pt or triton or nn_module):
|
||||
LOGGER.warning(f"WARNING ⚠️ Metadata not found for 'model={weights}'")
|
||||
|
||||
# Check names
|
||||
if "names" not in locals(): # names missing
|
||||
names = default_class_names(data)
|
||||
names = check_class_names(names)
|
||||
|
||||
# Disable gradients
|
||||
if pt:
|
||||
for p in model.parameters():
|
||||
p.requires_grad = False
|
||||
|
||||
self.__dict__.update(locals()) # assign all variables to self
|
||||
|
||||
def forward(self, im, augment=False, visualize=False, embed=None):
|
||||
"""
|
||||
Runs inference on the YOLOv8 MultiBackend model.
|
||||
|
||||
Args:
|
||||
im (torch.Tensor): The image tensor to perform inference on.
|
||||
augment (bool): whether to perform data augmentation during inference, defaults to False
|
||||
visualize (bool): whether to visualize the output predictions, defaults to False
|
||||
embed (list, optional): A list of feature vectors/embeddings to return.
|
||||
|
||||
Returns:
|
||||
(tuple): Tuple containing the raw output tensor, and processed output for visualization (if visualize=True)
|
||||
"""
|
||||
b, ch, h, w = im.shape # batch, channel, height, width
|
||||
if self.fp16 and im.dtype != torch.float16:
|
||||
im = im.half() # to FP16
|
||||
if self.nhwc:
|
||||
im = im.permute(0, 2, 3, 1) # torch BCHW to numpy BHWC shape(1,320,192,3)
|
||||
|
||||
# PyTorch
|
||||
if self.pt or self.nn_module:
|
||||
y = self.model(im, augment=augment, visualize=visualize, embed=embed)
|
||||
|
||||
# TorchScript
|
||||
elif self.jit:
|
||||
y = self.model(im)
|
||||
|
||||
# ONNX OpenCV DNN
|
||||
elif self.dnn:
|
||||
im = im.cpu().numpy() # torch to numpy
|
||||
self.net.setInput(im)
|
||||
y = self.net.forward()
|
||||
|
||||
# ONNX Runtime
|
||||
elif self.onnx:
|
||||
im = im.cpu().numpy() # torch to numpy
|
||||
y = self.session.run(self.output_names, {self.session.get_inputs()[0].name: im})
|
||||
|
||||
# OpenVINO
|
||||
elif self.xml:
|
||||
im = im.cpu().numpy() # FP32
|
||||
|
||||
if self.inference_mode in {"THROUGHPUT", "CUMULATIVE_THROUGHPUT"}: # optimized for larger batch-sizes
|
||||
n = im.shape[0] # number of images in batch
|
||||
results = [None] * n # preallocate list with None to match the number of images
|
||||
|
||||
def callback(request, userdata):
|
||||
"""Places result in preallocated list using userdata index."""
|
||||
results[userdata] = request.results
|
||||
|
||||
# Create AsyncInferQueue, set the callback and start asynchronous inference for each input image
|
||||
async_queue = self.ov.runtime.AsyncInferQueue(self.ov_compiled_model)
|
||||
async_queue.set_callback(callback)
|
||||
for i in range(n):
|
||||
# Start async inference with userdata=i to specify the position in results list
|
||||
async_queue.start_async(inputs={self.input_name: im[i : i + 1]}, userdata=i) # keep image as BCHW
|
||||
async_queue.wait_all() # wait for all inference requests to complete
|
||||
y = np.concatenate([list(r.values())[0] for r in results])
|
||||
|
||||
else: # inference_mode = "LATENCY", optimized for fastest first result at batch-size 1
|
||||
y = list(self.ov_compiled_model(im).values())
|
||||
|
||||
# TensorRT
|
||||
elif self.engine:
|
||||
if self.dynamic and im.shape != self.bindings["images"].shape:
|
||||
i = self.model.get_binding_index("images")
|
||||
self.context.set_binding_shape(i, im.shape) # reshape if dynamic
|
||||
self.bindings["images"] = self.bindings["images"]._replace(shape=im.shape)
|
||||
for name in self.output_names:
|
||||
i = self.model.get_binding_index(name)
|
||||
self.bindings[name].data.resize_(tuple(self.context.get_binding_shape(i)))
|
||||
s = self.bindings["images"].shape
|
||||
assert im.shape == s, f"input size {im.shape} {'>' if self.dynamic else 'not equal to'} max model size {s}"
|
||||
self.binding_addrs["images"] = int(im.data_ptr())
|
||||
self.context.execute_v2(list(self.binding_addrs.values()))
|
||||
y = [self.bindings[x].data for x in sorted(self.output_names)]
|
||||
|
||||
# CoreML
|
||||
elif self.coreml:
|
||||
im = im[0].cpu().numpy()
|
||||
im_pil = Image.fromarray((im * 255).astype("uint8"))
|
||||
# im = im.resize((192, 320), Image.BILINEAR)
|
||||
y = self.model.predict({"image": im_pil}) # coordinates are xywh normalized
|
||||
if "confidence" in y:
|
||||
raise TypeError(
|
||||
"Ultralytics only supports inference of non-pipelined CoreML models exported with "
|
||||
f"'nms=False', but 'model={w}' has an NMS pipeline created by an 'nms=True' export."
|
||||
)
|
||||
# TODO: CoreML NMS inference handling
|
||||
# from ultralytics.utils.ops import xywh2xyxy
|
||||
# box = xywh2xyxy(y['coordinates'] * [[w, h, w, h]]) # xyxy pixels
|
||||
# conf, cls = y['confidence'].max(1), y['confidence'].argmax(1).astype(np.float32)
|
||||
# y = np.concatenate((box, conf.reshape(-1, 1), cls.reshape(-1, 1)), 1)
|
||||
elif len(y) == 1: # classification model
|
||||
y = list(y.values())
|
||||
elif len(y) == 2: # segmentation model
|
||||
y = list(reversed(y.values())) # reversed for segmentation models (pred, proto)
|
||||
|
||||
# PaddlePaddle
|
||||
elif self.paddle:
|
||||
im = im.cpu().numpy().astype(np.float32)
|
||||
self.input_handle.copy_from_cpu(im)
|
||||
self.predictor.run()
|
||||
y = [self.predictor.get_output_handle(x).copy_to_cpu() for x in self.output_names]
|
||||
|
||||
# NCNN
|
||||
elif self.ncnn:
|
||||
mat_in = self.pyncnn.Mat(im[0].cpu().numpy())
|
||||
with self.net.create_extractor() as ex:
|
||||
ex.input(self.net.input_names()[0], mat_in)
|
||||
y = [np.array(ex.extract(x)[1])[None] for x in self.net.output_names()]
|
||||
|
||||
# NVIDIA Triton Inference Server
|
||||
elif self.triton:
|
||||
im = im.cpu().numpy() # torch to numpy
|
||||
y = self.model(im)
|
||||
|
||||
# TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
|
||||
else:
|
||||
im = im.cpu().numpy()
|
||||
if self.saved_model: # SavedModel
|
||||
y = self.model(im, training=False) if self.keras else self.model(im)
|
||||
if not isinstance(y, list):
|
||||
y = [y]
|
||||
elif self.pb: # GraphDef
|
||||
y = self.frozen_func(x=self.tf.constant(im))
|
||||
if len(y) == 2 and len(self.names) == 999: # segments and names not defined
|
||||
ip, ib = (0, 1) if len(y[0].shape) == 4 else (1, 0) # index of protos, boxes
|
||||
nc = y[ib].shape[1] - y[ip].shape[3] - 4 # y = (1, 160, 160, 32), (1, 116, 8400)
|
||||
self.names = {i: f"class{i}" for i in range(nc)}
|
||||
else: # Lite or Edge TPU
|
||||
details = self.input_details[0]
|
||||
integer = details["dtype"] in (np.int8, np.int16) # is TFLite quantized int8 or int16 model
|
||||
if integer:
|
||||
scale, zero_point = details["quantization"]
|
||||
im = (im / scale + zero_point).astype(details["dtype"]) # de-scale
|
||||
self.interpreter.set_tensor(details["index"], im)
|
||||
self.interpreter.invoke()
|
||||
y = []
|
||||
for output in self.output_details:
|
||||
x = self.interpreter.get_tensor(output["index"])
|
||||
if integer:
|
||||
scale, zero_point = output["quantization"]
|
||||
x = (x.astype(np.float32) - zero_point) * scale # re-scale
|
||||
if x.ndim > 2: # if task is not classification
|
||||
# Denormalize xywh by image size. See https://github.com/ultralytics/ultralytics/pull/1695
|
||||
# xywh are normalized in TFLite/EdgeTPU to mitigate quantization error of integer models
|
||||
x[:, [0, 2]] *= w
|
||||
x[:, [1, 3]] *= h
|
||||
y.append(x)
|
||||
# TF segment fixes: export is reversed vs ONNX export and protos are transposed
|
||||
if len(y) == 2: # segment with (det, proto) output order reversed
|
||||
if len(y[1].shape) != 4:
|
||||
y = list(reversed(y)) # should be y = (1, 116, 8400), (1, 160, 160, 32)
|
||||
y[1] = np.transpose(y[1], (0, 3, 1, 2)) # should be y = (1, 116, 8400), (1, 32, 160, 160)
|
||||
y = [x if isinstance(x, np.ndarray) else x.numpy() for x in y]
|
||||
|
||||
# for x in y:
|
||||
# print(type(x), len(x)) if isinstance(x, (list, tuple)) else print(type(x), x.shape) # debug shapes
|
||||
if isinstance(y, (list, tuple)):
|
||||
return self.from_numpy(y[0]) if len(y) == 1 else [self.from_numpy(x) for x in y]
|
||||
else:
|
||||
return self.from_numpy(y)
|
||||
|
||||
def from_numpy(self, x):
|
||||
"""
|
||||
Convert a numpy array to a tensor.
|
||||
|
||||
Args:
|
||||
x (np.ndarray): The array to be converted.
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): The converted tensor
|
||||
"""
|
||||
return torch.tensor(x).to(self.device) if isinstance(x, np.ndarray) else x
|
||||
|
||||
def warmup(self, imgsz=(1, 3, 640, 640)):
|
||||
"""
|
||||
Warm up the model by running one forward pass with a dummy input.
|
||||
|
||||
Args:
|
||||
imgsz (tuple): The shape of the dummy input tensor in the format (batch_size, channels, height, width)
|
||||
"""
|
||||
warmup_types = self.pt, self.jit, self.onnx, self.engine, self.saved_model, self.pb, self.triton, self.nn_module
|
||||
if any(warmup_types) and (self.device.type != "cpu" or self.triton):
|
||||
im = torch.empty(*imgsz, dtype=torch.half if self.fp16 else torch.float, device=self.device) # input
|
||||
for _ in range(2 if self.jit else 1):
|
||||
self.forward(im) # warmup
|
||||
|
||||
@staticmethod
|
||||
def _model_type(p="path/to/model.pt"):
|
||||
"""
|
||||
This function takes a path to a model file and returns the model type. Possibles types are pt, jit, onnx, xml,
|
||||
engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, ncnn or paddle.
|
||||
|
||||
Args:
|
||||
p: path to the model file. Defaults to path/to/model.pt
|
||||
|
||||
Examples:
|
||||
>>> model = AutoBackend(weights="path/to/model.onnx")
|
||||
>>> model_type = model._model_type() # returns "onnx"
|
||||
"""
|
||||
from ultralytics.engine.exporter import export_formats
|
||||
|
||||
sf = list(export_formats().Suffix) # export suffixes
|
||||
if not is_url(p) and not isinstance(p, str):
|
||||
check_suffix(p, sf) # checks
|
||||
name = Path(p).name
|
||||
types = [s in name for s in sf]
|
||||
types[5] |= name.endswith(".mlmodel") # retain support for older Apple CoreML *.mlmodel formats
|
||||
types[8] &= not types[9] # tflite &= not edgetpu
|
||||
if any(types):
|
||||
triton = False
|
||||
else:
|
||||
from urllib.parse import urlsplit
|
||||
|
||||
url = urlsplit(p)
|
||||
triton = bool(url.netloc) and bool(url.path) and url.scheme in {"http", "grpc"}
|
||||
|
||||
return types + [triton]
|
BIN
ultralytics/nn/modules/.head.py.swp
Normal file
BIN
ultralytics/nn/modules/.head.py.swp
Normal file
Binary file not shown.
147
ultralytics/nn/modules/__init__.py
Normal file
147
ultralytics/nn/modules/__init__.py
Normal file
@ -0,0 +1,147 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
"""
|
||||
Ultralytics modules.
|
||||
|
||||
Example:
|
||||
Visualize a module with Netron.
|
||||
```python
|
||||
from ultralytics.nn.modules import *
|
||||
import torch
|
||||
import os
|
||||
|
||||
x = torch.ones(1, 128, 40, 40)
|
||||
m = Conv(128, 128)
|
||||
f = f'{m._get_name()}.onnx'
|
||||
torch.onnx.export(m, x, f)
|
||||
os.system(f'onnxsim {f} {f} && open {f}')
|
||||
```
|
||||
"""
|
||||
|
||||
from .block import (
|
||||
C1,
|
||||
C2,
|
||||
C3,
|
||||
C3TR,
|
||||
DFL,
|
||||
SPP,
|
||||
SPPF,
|
||||
Bottleneck,
|
||||
BottleneckCSP,
|
||||
C2f,
|
||||
C2fAttn,
|
||||
ImagePoolingAttn,
|
||||
C3Ghost,
|
||||
C3x,
|
||||
GhostBottleneck,
|
||||
HGBlock,
|
||||
HGStem,
|
||||
Proto,
|
||||
RepC3,
|
||||
ResNetLayer,
|
||||
ContrastiveHead,
|
||||
BNContrastiveHead,
|
||||
RepNCSPELAN4,
|
||||
ADown,
|
||||
SPPELAN,
|
||||
CBFuse,
|
||||
CBLinear,
|
||||
Silence,
|
||||
PSA,
|
||||
C2fCIB,
|
||||
SCDown,
|
||||
RepVGGDW
|
||||
)
|
||||
from .conv import (
|
||||
CBAM,
|
||||
ChannelAttention,
|
||||
Concat,
|
||||
Conv,
|
||||
Conv2,
|
||||
ConvTranspose,
|
||||
DWConv,
|
||||
DWConvTranspose2d,
|
||||
Focus,
|
||||
GhostConv,
|
||||
LightConv,
|
||||
RepConv,
|
||||
SpatialAttention,
|
||||
)
|
||||
from .head import OBB, Classify, Detect, Pose, RTDETRDecoder, Segment, WorldDetect, v10Detect
|
||||
from .transformer import (
|
||||
AIFI,
|
||||
MLP,
|
||||
DeformableTransformerDecoder,
|
||||
DeformableTransformerDecoderLayer,
|
||||
LayerNorm2d,
|
||||
MLPBlock,
|
||||
MSDeformAttn,
|
||||
TransformerBlock,
|
||||
TransformerEncoderLayer,
|
||||
TransformerLayer,
|
||||
)
|
||||
|
||||
__all__ = (
|
||||
"Conv",
|
||||
"Conv2",
|
||||
"LightConv",
|
||||
"RepConv",
|
||||
"DWConv",
|
||||
"DWConvTranspose2d",
|
||||
"ConvTranspose",
|
||||
"Focus",
|
||||
"GhostConv",
|
||||
"ChannelAttention",
|
||||
"SpatialAttention",
|
||||
"CBAM",
|
||||
"Concat",
|
||||
"TransformerLayer",
|
||||
"TransformerBlock",
|
||||
"MLPBlock",
|
||||
"LayerNorm2d",
|
||||
"DFL",
|
||||
"HGBlock",
|
||||
"HGStem",
|
||||
"SPP",
|
||||
"SPPF",
|
||||
"C1",
|
||||
"C2",
|
||||
"C3",
|
||||
"C2f",
|
||||
"C2fAttn",
|
||||
"C3x",
|
||||
"C3TR",
|
||||
"C3Ghost",
|
||||
"GhostBottleneck",
|
||||
"Bottleneck",
|
||||
"BottleneckCSP",
|
||||
"Proto",
|
||||
"Detect",
|
||||
"Segment",
|
||||
"Pose",
|
||||
"Classify",
|
||||
"TransformerEncoderLayer",
|
||||
"RepC3",
|
||||
"RTDETRDecoder",
|
||||
"AIFI",
|
||||
"DeformableTransformerDecoder",
|
||||
"DeformableTransformerDecoderLayer",
|
||||
"MSDeformAttn",
|
||||
"MLP",
|
||||
"ResNetLayer",
|
||||
"OBB",
|
||||
"WorldDetect",
|
||||
"ImagePoolingAttn",
|
||||
"ContrastiveHead",
|
||||
"BNContrastiveHead",
|
||||
"RepNCSPELAN4",
|
||||
"ADown",
|
||||
"SPPELAN",
|
||||
"CBFuse",
|
||||
"CBLinear",
|
||||
"Silence",
|
||||
"PSA",
|
||||
"C2fCIB",
|
||||
"SCDown",
|
||||
"RepVGGDW",
|
||||
"v10Detect"
|
||||
)
|
827
ultralytics/nn/modules/block.py
Normal file
827
ultralytics/nn/modules/block.py
Normal file
@ -0,0 +1,827 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
"""Block modules."""
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from .conv import Conv, DWConv, GhostConv, LightConv, RepConv, autopad
|
||||
from .transformer import TransformerBlock
|
||||
from ultralytics.utils.torch_utils import fuse_conv_and_bn
|
||||
|
||||
__all__ = (
|
||||
"DFL",
|
||||
"HGBlock",
|
||||
"HGStem",
|
||||
"SPP",
|
||||
"SPPF",
|
||||
"C1",
|
||||
"C2",
|
||||
"C3",
|
||||
"C2f",
|
||||
"C2fAttn",
|
||||
"ImagePoolingAttn",
|
||||
"ContrastiveHead",
|
||||
"BNContrastiveHead",
|
||||
"C3x",
|
||||
"C3TR",
|
||||
"C3Ghost",
|
||||
"GhostBottleneck",
|
||||
"Bottleneck",
|
||||
"BottleneckCSP",
|
||||
"Proto",
|
||||
"RepC3",
|
||||
"ResNetLayer",
|
||||
"RepNCSPELAN4",
|
||||
"ADown",
|
||||
"SPPELAN",
|
||||
"CBFuse",
|
||||
"CBLinear",
|
||||
"Silence",
|
||||
)
|
||||
|
||||
|
||||
class DFL(nn.Module):
|
||||
"""
|
||||
Integral module of Distribution Focal Loss (DFL).
|
||||
|
||||
Proposed in Generalized Focal Loss https://ieeexplore.ieee.org/document/9792391
|
||||
"""
|
||||
|
||||
def __init__(self, c1=16):
|
||||
"""Initialize a convolutional layer with a given number of input channels."""
|
||||
super().__init__()
|
||||
self.conv = nn.Conv2d(c1, 1, 1, bias=False).requires_grad_(False)
|
||||
x = torch.arange(c1, dtype=torch.float)
|
||||
self.conv.weight.data[:] = nn.Parameter(x.view(1, c1, 1, 1))
|
||||
self.c1 = c1
|
||||
|
||||
def forward(self, x):
|
||||
"""Applies a transformer layer on input tensor 'x' and returns a tensor."""
|
||||
b, _, a = x.shape # batch, channels, anchors
|
||||
return self.conv(x.view(b, 4, self.c1, a).transpose(2, 1).softmax(1)).view(b, 4, a)
|
||||
# return self.conv(x.view(b, self.c1, 4, a).softmax(1)).view(b, 4, a)
|
||||
|
||||
|
||||
class Proto(nn.Module):
|
||||
"""YOLOv8 mask Proto module for segmentation models."""
|
||||
|
||||
def __init__(self, c1, c_=256, c2=32):
|
||||
"""
|
||||
Initializes the YOLOv8 mask Proto module with specified number of protos and masks.
|
||||
|
||||
Input arguments are ch_in, number of protos, number of masks.
|
||||
"""
|
||||
super().__init__()
|
||||
self.cv1 = Conv(c1, c_, k=3)
|
||||
self.upsample = nn.ConvTranspose2d(c_, c_, 2, 2, 0, bias=True) # nn.Upsample(scale_factor=2, mode='nearest')
|
||||
self.cv2 = Conv(c_, c_, k=3)
|
||||
self.cv3 = Conv(c_, c2)
|
||||
|
||||
def forward(self, x):
|
||||
"""Performs a forward pass through layers using an upsampled input image."""
|
||||
return self.cv3(self.cv2(self.upsample(self.cv1(x))))
|
||||
|
||||
|
||||
class HGStem(nn.Module):
|
||||
"""
|
||||
StemBlock of PPHGNetV2 with 5 convolutions and one maxpool2d.
|
||||
|
||||
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
|
||||
"""
|
||||
|
||||
def __init__(self, c1, cm, c2):
|
||||
"""Initialize the SPP layer with input/output channels and specified kernel sizes for max pooling."""
|
||||
super().__init__()
|
||||
self.stem1 = Conv(c1, cm, 3, 2, act=nn.ReLU())
|
||||
self.stem2a = Conv(cm, cm // 2, 2, 1, 0, act=nn.ReLU())
|
||||
self.stem2b = Conv(cm // 2, cm, 2, 1, 0, act=nn.ReLU())
|
||||
self.stem3 = Conv(cm * 2, cm, 3, 2, act=nn.ReLU())
|
||||
self.stem4 = Conv(cm, c2, 1, 1, act=nn.ReLU())
|
||||
self.pool = nn.MaxPool2d(kernel_size=2, stride=1, padding=0, ceil_mode=True)
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward pass of a PPHGNetV2 backbone layer."""
|
||||
x = self.stem1(x)
|
||||
x = F.pad(x, [0, 1, 0, 1])
|
||||
x2 = self.stem2a(x)
|
||||
x2 = F.pad(x2, [0, 1, 0, 1])
|
||||
x2 = self.stem2b(x2)
|
||||
x1 = self.pool(x)
|
||||
x = torch.cat([x1, x2], dim=1)
|
||||
x = self.stem3(x)
|
||||
x = self.stem4(x)
|
||||
return x
|
||||
|
||||
|
||||
class HGBlock(nn.Module):
|
||||
"""
|
||||
HG_Block of PPHGNetV2 with 2 convolutions and LightConv.
|
||||
|
||||
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
|
||||
"""
|
||||
|
||||
def __init__(self, c1, cm, c2, k=3, n=6, lightconv=False, shortcut=False, act=nn.ReLU()):
|
||||
"""Initializes a CSP Bottleneck with 1 convolution using specified input and output channels."""
|
||||
super().__init__()
|
||||
block = LightConv if lightconv else Conv
|
||||
self.m = nn.ModuleList(block(c1 if i == 0 else cm, cm, k=k, act=act) for i in range(n))
|
||||
self.sc = Conv(c1 + n * cm, c2 // 2, 1, 1, act=act) # squeeze conv
|
||||
self.ec = Conv(c2 // 2, c2, 1, 1, act=act) # excitation conv
|
||||
self.add = shortcut and c1 == c2
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward pass of a PPHGNetV2 backbone layer."""
|
||||
y = [x]
|
||||
y.extend(m(y[-1]) for m in self.m)
|
||||
y = self.ec(self.sc(torch.cat(y, 1)))
|
||||
return y + x if self.add else y
|
||||
|
||||
|
||||
class SPP(nn.Module):
|
||||
"""Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729."""
|
||||
|
||||
def __init__(self, c1, c2, k=(5, 9, 13)):
|
||||
"""Initialize the SPP layer with input/output channels and pooling kernel sizes."""
|
||||
super().__init__()
|
||||
c_ = c1 // 2 # hidden channels
|
||||
self.cv1 = Conv(c1, c_, 1, 1)
|
||||
self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
|
||||
self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward pass of the SPP layer, performing spatial pyramid pooling."""
|
||||
x = self.cv1(x)
|
||||
return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
|
||||
|
||||
|
||||
class SPPF(nn.Module):
|
||||
"""Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher."""
|
||||
|
||||
def __init__(self, c1, c2, k=5):
|
||||
"""
|
||||
Initializes the SPPF layer with given input/output channels and kernel size.
|
||||
|
||||
This module is equivalent to SPP(k=(5, 9, 13)).
|
||||
"""
|
||||
super().__init__()
|
||||
c_ = c1 // 2 # hidden channels
|
||||
self.cv1 = Conv(c1, c_, 1, 1)
|
||||
self.cv2 = Conv(c_ * 4, c2, 1, 1)
|
||||
self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward pass through Ghost Convolution block."""
|
||||
x = self.cv1(x)
|
||||
y1 = self.m(x)
|
||||
y2 = self.m(y1)
|
||||
return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))
|
||||
|
||||
|
||||
class C1(nn.Module):
|
||||
"""CSP Bottleneck with 1 convolution."""
|
||||
|
||||
def __init__(self, c1, c2, n=1):
|
||||
"""Initializes the CSP Bottleneck with configurations for 1 convolution with arguments ch_in, ch_out, number."""
|
||||
super().__init__()
|
||||
self.cv1 = Conv(c1, c2, 1, 1)
|
||||
self.m = nn.Sequential(*(Conv(c2, c2, 3) for _ in range(n)))
|
||||
|
||||
def forward(self, x):
|
||||
"""Applies cross-convolutions to input in the C3 module."""
|
||||
y = self.cv1(x)
|
||||
return self.m(y) + y
|
||||
|
||||
|
||||
class C2(nn.Module):
|
||||
"""CSP Bottleneck with 2 convolutions."""
|
||||
|
||||
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
||||
"""Initializes the CSP Bottleneck with 2 convolutions module with arguments ch_in, ch_out, number, shortcut,
|
||||
groups, expansion.
|
||||
"""
|
||||
super().__init__()
|
||||
self.c = int(c2 * e) # hidden channels
|
||||
self.cv1 = Conv(c1, 2 * self.c, 1, 1)
|
||||
self.cv2 = Conv(2 * self.c, c2, 1) # optional act=FReLU(c2)
|
||||
# self.attention = ChannelAttention(2 * self.c) # or SpatialAttention()
|
||||
self.m = nn.Sequential(*(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n)))
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward pass through the CSP bottleneck with 2 convolutions."""
|
||||
a, b = self.cv1(x).chunk(2, 1)
|
||||
return self.cv2(torch.cat((self.m(a), b), 1))
|
||||
|
||||
|
||||
class C2f(nn.Module):
|
||||
"""Faster Implementation of CSP Bottleneck with 2 convolutions."""
|
||||
|
||||
def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
|
||||
"""Initialize CSP bottleneck layer with two convolutions with arguments ch_in, ch_out, number, shortcut, groups,
|
||||
expansion.
|
||||
"""
|
||||
super().__init__()
|
||||
self.c = int(c2 * e) # hidden channels
|
||||
self.cv1 = Conv(c1, 2 * self.c, 1, 1)
|
||||
self.cv2 = Conv((2 + n) * self.c, c2, 1) # optional act=FReLU(c2)
|
||||
self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward pass through C2f layer."""
|
||||
y = list(self.cv1(x).chunk(2, 1))
|
||||
y.extend(m(y[-1]) for m in self.m)
|
||||
return self.cv2(torch.cat(y, 1))
|
||||
|
||||
def forward_split(self, x):
|
||||
"""Forward pass using split() instead of chunk()."""
|
||||
y = list(self.cv1(x).split((self.c, self.c), 1))
|
||||
y.extend(m(y[-1]) for m in self.m)
|
||||
return self.cv2(torch.cat(y, 1))
|
||||
|
||||
|
||||
class C3(nn.Module):
|
||||
"""CSP Bottleneck with 3 convolutions."""
|
||||
|
||||
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
||||
"""Initialize the CSP Bottleneck with given channels, number, shortcut, groups, and expansion values."""
|
||||
super().__init__()
|
||||
c_ = int(c2 * e) # hidden channels
|
||||
self.cv1 = Conv(c1, c_, 1, 1)
|
||||
self.cv2 = Conv(c1, c_, 1, 1)
|
||||
self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2)
|
||||
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=((1, 1), (3, 3)), e=1.0) for _ in range(n)))
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward pass through the CSP bottleneck with 2 convolutions."""
|
||||
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
|
||||
|
||||
|
||||
class C3x(C3):
|
||||
"""C3 module with cross-convolutions."""
|
||||
|
||||
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
||||
"""Initialize C3TR instance and set default parameters."""
|
||||
super().__init__(c1, c2, n, shortcut, g, e)
|
||||
self.c_ = int(c2 * e)
|
||||
self.m = nn.Sequential(*(Bottleneck(self.c_, self.c_, shortcut, g, k=((1, 3), (3, 1)), e=1) for _ in range(n)))
|
||||
|
||||
|
||||
class RepC3(nn.Module):
|
||||
"""Rep C3."""
|
||||
|
||||
def __init__(self, c1, c2, n=3, e=1.0):
|
||||
"""Initialize CSP Bottleneck with a single convolution using input channels, output channels, and number."""
|
||||
super().__init__()
|
||||
c_ = int(c2 * e) # hidden channels
|
||||
self.cv1 = Conv(c1, c2, 1, 1)
|
||||
self.cv2 = Conv(c1, c2, 1, 1)
|
||||
self.m = nn.Sequential(*[RepConv(c_, c_) for _ in range(n)])
|
||||
self.cv3 = Conv(c_, c2, 1, 1) if c_ != c2 else nn.Identity()
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward pass of RT-DETR neck layer."""
|
||||
return self.cv3(self.m(self.cv1(x)) + self.cv2(x))
|
||||
|
||||
|
||||
class C3TR(C3):
|
||||
"""C3 module with TransformerBlock()."""
|
||||
|
||||
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
||||
"""Initialize C3Ghost module with GhostBottleneck()."""
|
||||
super().__init__(c1, c2, n, shortcut, g, e)
|
||||
c_ = int(c2 * e)
|
||||
self.m = TransformerBlock(c_, c_, 4, n)
|
||||
|
||||
|
||||
class C3Ghost(C3):
|
||||
"""C3 module with GhostBottleneck()."""
|
||||
|
||||
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
||||
"""Initialize 'SPP' module with various pooling sizes for spatial pyramid pooling."""
|
||||
super().__init__(c1, c2, n, shortcut, g, e)
|
||||
c_ = int(c2 * e) # hidden channels
|
||||
self.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n)))
|
||||
|
||||
|
||||
class GhostBottleneck(nn.Module):
|
||||
"""Ghost Bottleneck https://github.com/huawei-noah/ghostnet."""
|
||||
|
||||
def __init__(self, c1, c2, k=3, s=1):
|
||||
"""Initializes GhostBottleneck module with arguments ch_in, ch_out, kernel, stride."""
|
||||
super().__init__()
|
||||
c_ = c2 // 2
|
||||
self.conv = nn.Sequential(
|
||||
GhostConv(c1, c_, 1, 1), # pw
|
||||
DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw
|
||||
GhostConv(c_, c2, 1, 1, act=False), # pw-linear
|
||||
)
|
||||
self.shortcut = (
|
||||
nn.Sequential(DWConv(c1, c1, k, s, act=False), Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
"""Applies skip connection and concatenation to input tensor."""
|
||||
return self.conv(x) + self.shortcut(x)
|
||||
|
||||
|
||||
class Bottleneck(nn.Module):
|
||||
"""Standard bottleneck."""
|
||||
|
||||
def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):
|
||||
"""Initializes a bottleneck module with given input/output channels, shortcut option, group, kernels, and
|
||||
expansion.
|
||||
"""
|
||||
super().__init__()
|
||||
c_ = int(c2 * e) # hidden channels
|
||||
self.cv1 = Conv(c1, c_, k[0], 1)
|
||||
self.cv2 = Conv(c_, c2, k[1], 1, g=g)
|
||||
self.add = shortcut and c1 == c2
|
||||
|
||||
def forward(self, x):
|
||||
"""'forward()' applies the YOLO FPN to input data."""
|
||||
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
|
||||
|
||||
|
||||
class BottleneckCSP(nn.Module):
|
||||
"""CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks."""
|
||||
|
||||
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
||||
"""Initializes the CSP Bottleneck given arguments for ch_in, ch_out, number, shortcut, groups, expansion."""
|
||||
super().__init__()
|
||||
c_ = int(c2 * e) # hidden channels
|
||||
self.cv1 = Conv(c1, c_, 1, 1)
|
||||
self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
|
||||
self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
|
||||
self.cv4 = Conv(2 * c_, c2, 1, 1)
|
||||
self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
|
||||
self.act = nn.SiLU()
|
||||
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
|
||||
|
||||
def forward(self, x):
|
||||
"""Applies a CSP bottleneck with 3 convolutions."""
|
||||
y1 = self.cv3(self.m(self.cv1(x)))
|
||||
y2 = self.cv2(x)
|
||||
return self.cv4(self.act(self.bn(torch.cat((y1, y2), 1))))
|
||||
|
||||
|
||||
class ResNetBlock(nn.Module):
|
||||
"""ResNet block with standard convolution layers."""
|
||||
|
||||
def __init__(self, c1, c2, s=1, e=4):
|
||||
"""Initialize convolution with given parameters."""
|
||||
super().__init__()
|
||||
c3 = e * c2
|
||||
self.cv1 = Conv(c1, c2, k=1, s=1, act=True)
|
||||
self.cv2 = Conv(c2, c2, k=3, s=s, p=1, act=True)
|
||||
self.cv3 = Conv(c2, c3, k=1, act=False)
|
||||
self.shortcut = nn.Sequential(Conv(c1, c3, k=1, s=s, act=False)) if s != 1 or c1 != c3 else nn.Identity()
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward pass through the ResNet block."""
|
||||
return F.relu(self.cv3(self.cv2(self.cv1(x))) + self.shortcut(x))
|
||||
|
||||
|
||||
class ResNetLayer(nn.Module):
|
||||
"""ResNet layer with multiple ResNet blocks."""
|
||||
|
||||
def __init__(self, c1, c2, s=1, is_first=False, n=1, e=4):
|
||||
"""Initializes the ResNetLayer given arguments."""
|
||||
super().__init__()
|
||||
self.is_first = is_first
|
||||
|
||||
if self.is_first:
|
||||
self.layer = nn.Sequential(
|
||||
Conv(c1, c2, k=7, s=2, p=3, act=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
||||
)
|
||||
else:
|
||||
blocks = [ResNetBlock(c1, c2, s, e=e)]
|
||||
blocks.extend([ResNetBlock(e * c2, c2, 1, e=e) for _ in range(n - 1)])
|
||||
self.layer = nn.Sequential(*blocks)
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward pass through the ResNet layer."""
|
||||
return self.layer(x)
|
||||
|
||||
|
||||
class MaxSigmoidAttnBlock(nn.Module):
|
||||
"""Max Sigmoid attention block."""
|
||||
|
||||
def __init__(self, c1, c2, nh=1, ec=128, gc=512, scale=False):
|
||||
"""Initializes MaxSigmoidAttnBlock with specified arguments."""
|
||||
super().__init__()
|
||||
self.nh = nh
|
||||
self.hc = c2 // nh
|
||||
self.ec = Conv(c1, ec, k=1, act=False) if c1 != ec else None
|
||||
self.gl = nn.Linear(gc, ec)
|
||||
self.bias = nn.Parameter(torch.zeros(nh))
|
||||
self.proj_conv = Conv(c1, c2, k=3, s=1, act=False)
|
||||
self.scale = nn.Parameter(torch.ones(1, nh, 1, 1)) if scale else 1.0
|
||||
|
||||
def forward(self, x, guide):
|
||||
"""Forward process."""
|
||||
bs, _, h, w = x.shape
|
||||
|
||||
guide = self.gl(guide)
|
||||
guide = guide.view(bs, -1, self.nh, self.hc)
|
||||
embed = self.ec(x) if self.ec is not None else x
|
||||
embed = embed.view(bs, self.nh, self.hc, h, w)
|
||||
|
||||
aw = torch.einsum("bmchw,bnmc->bmhwn", embed, guide)
|
||||
aw = aw.max(dim=-1)[0]
|
||||
aw = aw / (self.hc**0.5)
|
||||
aw = aw + self.bias[None, :, None, None]
|
||||
aw = aw.sigmoid() * self.scale
|
||||
|
||||
x = self.proj_conv(x)
|
||||
x = x.view(bs, self.nh, -1, h, w)
|
||||
x = x * aw.unsqueeze(2)
|
||||
return x.view(bs, -1, h, w)
|
||||
|
||||
|
||||
class C2fAttn(nn.Module):
|
||||
"""C2f module with an additional attn module."""
|
||||
|
||||
def __init__(self, c1, c2, n=1, ec=128, nh=1, gc=512, shortcut=False, g=1, e=0.5):
|
||||
"""Initialize CSP bottleneck layer with two convolutions with arguments ch_in, ch_out, number, shortcut, groups,
|
||||
expansion.
|
||||
"""
|
||||
super().__init__()
|
||||
self.c = int(c2 * e) # hidden channels
|
||||
self.cv1 = Conv(c1, 2 * self.c, 1, 1)
|
||||
self.cv2 = Conv((3 + n) * self.c, c2, 1) # optional act=FReLU(c2)
|
||||
self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))
|
||||
self.attn = MaxSigmoidAttnBlock(self.c, self.c, gc=gc, ec=ec, nh=nh)
|
||||
|
||||
def forward(self, x, guide):
|
||||
"""Forward pass through C2f layer."""
|
||||
y = list(self.cv1(x).chunk(2, 1))
|
||||
y.extend(m(y[-1]) for m in self.m)
|
||||
y.append(self.attn(y[-1], guide))
|
||||
return self.cv2(torch.cat(y, 1))
|
||||
|
||||
def forward_split(self, x, guide):
|
||||
"""Forward pass using split() instead of chunk()."""
|
||||
y = list(self.cv1(x).split((self.c, self.c), 1))
|
||||
y.extend(m(y[-1]) for m in self.m)
|
||||
y.append(self.attn(y[-1], guide))
|
||||
return self.cv2(torch.cat(y, 1))
|
||||
|
||||
|
||||
class ImagePoolingAttn(nn.Module):
|
||||
"""ImagePoolingAttn: Enhance the text embeddings with image-aware information."""
|
||||
|
||||
def __init__(self, ec=256, ch=(), ct=512, nh=8, k=3, scale=False):
|
||||
"""Initializes ImagePoolingAttn with specified arguments."""
|
||||
super().__init__()
|
||||
|
||||
nf = len(ch)
|
||||
self.query = nn.Sequential(nn.LayerNorm(ct), nn.Linear(ct, ec))
|
||||
self.key = nn.Sequential(nn.LayerNorm(ec), nn.Linear(ec, ec))
|
||||
self.value = nn.Sequential(nn.LayerNorm(ec), nn.Linear(ec, ec))
|
||||
self.proj = nn.Linear(ec, ct)
|
||||
self.scale = nn.Parameter(torch.tensor([0.0]), requires_grad=True) if scale else 1.0
|
||||
self.projections = nn.ModuleList([nn.Conv2d(in_channels, ec, kernel_size=1) for in_channels in ch])
|
||||
self.im_pools = nn.ModuleList([nn.AdaptiveMaxPool2d((k, k)) for _ in range(nf)])
|
||||
self.ec = ec
|
||||
self.nh = nh
|
||||
self.nf = nf
|
||||
self.hc = ec // nh
|
||||
self.k = k
|
||||
|
||||
def forward(self, x, text):
|
||||
"""Executes attention mechanism on input tensor x and guide tensor."""
|
||||
bs = x[0].shape[0]
|
||||
assert len(x) == self.nf
|
||||
num_patches = self.k**2
|
||||
x = [pool(proj(x)).view(bs, -1, num_patches) for (x, proj, pool) in zip(x, self.projections, self.im_pools)]
|
||||
x = torch.cat(x, dim=-1).transpose(1, 2)
|
||||
q = self.query(text)
|
||||
k = self.key(x)
|
||||
v = self.value(x)
|
||||
|
||||
# q = q.reshape(1, text.shape[1], self.nh, self.hc).repeat(bs, 1, 1, 1)
|
||||
q = q.reshape(bs, -1, self.nh, self.hc)
|
||||
k = k.reshape(bs, -1, self.nh, self.hc)
|
||||
v = v.reshape(bs, -1, self.nh, self.hc)
|
||||
|
||||
aw = torch.einsum("bnmc,bkmc->bmnk", q, k)
|
||||
aw = aw / (self.hc**0.5)
|
||||
aw = F.softmax(aw, dim=-1)
|
||||
|
||||
x = torch.einsum("bmnk,bkmc->bnmc", aw, v)
|
||||
x = self.proj(x.reshape(bs, -1, self.ec))
|
||||
return x * self.scale + text
|
||||
|
||||
|
||||
class ContrastiveHead(nn.Module):
|
||||
"""Contrastive Head for YOLO-World compute the region-text scores according to the similarity between image and text
|
||||
features.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
"""Initializes ContrastiveHead with specified region-text similarity parameters."""
|
||||
super().__init__()
|
||||
self.bias = nn.Parameter(torch.zeros([]))
|
||||
self.logit_scale = nn.Parameter(torch.ones([]) * torch.tensor(1 / 0.07).log())
|
||||
|
||||
def forward(self, x, w):
|
||||
"""Forward function of contrastive learning."""
|
||||
x = F.normalize(x, dim=1, p=2)
|
||||
w = F.normalize(w, dim=-1, p=2)
|
||||
x = torch.einsum("bchw,bkc->bkhw", x, w)
|
||||
return x * self.logit_scale.exp() + self.bias
|
||||
|
||||
|
||||
class BNContrastiveHead(nn.Module):
|
||||
"""
|
||||
Batch Norm Contrastive Head for YOLO-World using batch norm instead of l2-normalization.
|
||||
|
||||
Args:
|
||||
embed_dims (int): Embed dimensions of text and image features.
|
||||
"""
|
||||
|
||||
def __init__(self, embed_dims: int):
|
||||
"""Initialize ContrastiveHead with region-text similarity parameters."""
|
||||
super().__init__()
|
||||
self.norm = nn.BatchNorm2d(embed_dims)
|
||||
self.bias = nn.Parameter(torch.zeros([]))
|
||||
# use -1.0 is more stable
|
||||
self.logit_scale = nn.Parameter(-1.0 * torch.ones([]))
|
||||
|
||||
def forward(self, x, w):
|
||||
"""Forward function of contrastive learning."""
|
||||
x = self.norm(x)
|
||||
w = F.normalize(w, dim=-1, p=2)
|
||||
x = torch.einsum("bchw,bkc->bkhw", x, w)
|
||||
return x * self.logit_scale.exp() + self.bias
|
||||
|
||||
|
||||
class RepBottleneck(nn.Module):
|
||||
"""Rep bottleneck."""
|
||||
|
||||
def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):
|
||||
"""Initializes a RepBottleneck module with customizable in/out channels, shortcut option, groups and expansion
|
||||
ratio.
|
||||
"""
|
||||
super().__init__()
|
||||
c_ = int(c2 * e) # hidden channels
|
||||
self.cv1 = RepConv(c1, c_, k[0], 1)
|
||||
self.cv2 = Conv(c_, c2, k[1], 1, g=g)
|
||||
self.add = shortcut and c1 == c2
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward pass through RepBottleneck layer."""
|
||||
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
|
||||
|
||||
|
||||
class RepCSP(nn.Module):
|
||||
"""Rep CSP Bottleneck with 3 convolutions."""
|
||||
|
||||
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
||||
"""Initializes RepCSP layer with given channels, repetitions, shortcut, groups and expansion ratio."""
|
||||
super().__init__()
|
||||
c_ = int(c2 * e) # hidden channels
|
||||
self.cv1 = Conv(c1, c_, 1, 1)
|
||||
self.cv2 = Conv(c1, c_, 1, 1)
|
||||
self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2)
|
||||
self.m = nn.Sequential(*(RepBottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward pass through RepCSP layer."""
|
||||
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
|
||||
|
||||
|
||||
class RepNCSPELAN4(nn.Module):
|
||||
"""CSP-ELAN."""
|
||||
|
||||
def __init__(self, c1, c2, c3, c4, n=1):
|
||||
"""Initializes CSP-ELAN layer with specified channel sizes, repetitions, and convolutions."""
|
||||
super().__init__()
|
||||
self.c = c3 // 2
|
||||
self.cv1 = Conv(c1, c3, 1, 1)
|
||||
self.cv2 = nn.Sequential(RepCSP(c3 // 2, c4, n), Conv(c4, c4, 3, 1))
|
||||
self.cv3 = nn.Sequential(RepCSP(c4, c4, n), Conv(c4, c4, 3, 1))
|
||||
self.cv4 = Conv(c3 + (2 * c4), c2, 1, 1)
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward pass through RepNCSPELAN4 layer."""
|
||||
y = list(self.cv1(x).chunk(2, 1))
|
||||
y.extend((m(y[-1])) for m in [self.cv2, self.cv3])
|
||||
return self.cv4(torch.cat(y, 1))
|
||||
|
||||
def forward_split(self, x):
|
||||
"""Forward pass using split() instead of chunk()."""
|
||||
y = list(self.cv1(x).split((self.c, self.c), 1))
|
||||
y.extend(m(y[-1]) for m in [self.cv2, self.cv3])
|
||||
return self.cv4(torch.cat(y, 1))
|
||||
|
||||
|
||||
class ADown(nn.Module):
|
||||
"""ADown."""
|
||||
|
||||
def __init__(self, c1, c2):
|
||||
"""Initializes ADown module with convolution layers to downsample input from channels c1 to c2."""
|
||||
super().__init__()
|
||||
self.c = c2 // 2
|
||||
self.cv1 = Conv(c1 // 2, self.c, 3, 2, 1)
|
||||
self.cv2 = Conv(c1 // 2, self.c, 1, 1, 0)
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward pass through ADown layer."""
|
||||
x = torch.nn.functional.avg_pool2d(x, 2, 1, 0, False, True)
|
||||
x1, x2 = x.chunk(2, 1)
|
||||
x1 = self.cv1(x1)
|
||||
x2 = torch.nn.functional.max_pool2d(x2, 3, 2, 1)
|
||||
x2 = self.cv2(x2)
|
||||
return torch.cat((x1, x2), 1)
|
||||
|
||||
|
||||
class SPPELAN(nn.Module):
|
||||
"""SPP-ELAN."""
|
||||
|
||||
def __init__(self, c1, c2, c3, k=5):
|
||||
"""Initializes SPP-ELAN block with convolution and max pooling layers for spatial pyramid pooling."""
|
||||
super().__init__()
|
||||
self.c = c3
|
||||
self.cv1 = Conv(c1, c3, 1, 1)
|
||||
self.cv2 = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
|
||||
self.cv3 = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
|
||||
self.cv4 = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
|
||||
self.cv5 = Conv(4 * c3, c2, 1, 1)
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward pass through SPPELAN layer."""
|
||||
y = [self.cv1(x)]
|
||||
y.extend(m(y[-1]) for m in [self.cv2, self.cv3, self.cv4])
|
||||
return self.cv5(torch.cat(y, 1))
|
||||
|
||||
|
||||
class Silence(nn.Module):
|
||||
"""Silence."""
|
||||
|
||||
def __init__(self):
|
||||
"""Initializes the Silence module."""
|
||||
super(Silence, self).__init__()
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward pass through Silence layer."""
|
||||
return x
|
||||
|
||||
|
||||
class CBLinear(nn.Module):
|
||||
"""CBLinear."""
|
||||
|
||||
def __init__(self, c1, c2s, k=1, s=1, p=None, g=1):
|
||||
"""Initializes the CBLinear module, passing inputs unchanged."""
|
||||
super(CBLinear, self).__init__()
|
||||
self.c2s = c2s
|
||||
self.conv = nn.Conv2d(c1, sum(c2s), k, s, autopad(k, p), groups=g, bias=True)
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward pass through CBLinear layer."""
|
||||
outs = self.conv(x).split(self.c2s, dim=1)
|
||||
return outs
|
||||
|
||||
|
||||
class CBFuse(nn.Module):
|
||||
"""CBFuse."""
|
||||
|
||||
def __init__(self, idx):
|
||||
"""Initializes CBFuse module with layer index for selective feature fusion."""
|
||||
super(CBFuse, self).__init__()
|
||||
self.idx = idx
|
||||
|
||||
def forward(self, xs):
|
||||
"""Forward pass through CBFuse layer."""
|
||||
target_size = xs[-1].shape[2:]
|
||||
res = [F.interpolate(x[self.idx[i]], size=target_size, mode="nearest") for i, x in enumerate(xs[:-1])]
|
||||
out = torch.sum(torch.stack(res + xs[-1:]), dim=0)
|
||||
return out
|
||||
|
||||
|
||||
class RepVGGDW(torch.nn.Module):
|
||||
def __init__(self, ed) -> None:
|
||||
super().__init__()
|
||||
self.conv = Conv(ed, ed, 7, 1, 3, g=ed, act=False)
|
||||
self.conv1 = Conv(ed, ed, 3, 1, 1, g=ed, act=False)
|
||||
self.dim = ed
|
||||
self.act = nn.SiLU()
|
||||
|
||||
def forward(self, x):
|
||||
return self.act(self.conv(x) + self.conv1(x))
|
||||
|
||||
def forward_fuse(self, x):
|
||||
return self.act(self.conv(x))
|
||||
|
||||
@torch.no_grad()
|
||||
def fuse(self):
|
||||
conv = fuse_conv_and_bn(self.conv.conv, self.conv.bn)
|
||||
conv1 = fuse_conv_and_bn(self.conv1.conv, self.conv1.bn)
|
||||
|
||||
conv_w = conv.weight
|
||||
conv_b = conv.bias
|
||||
conv1_w = conv1.weight
|
||||
conv1_b = conv1.bias
|
||||
|
||||
conv1_w = torch.nn.functional.pad(conv1_w, [2,2,2,2])
|
||||
|
||||
final_conv_w = conv_w + conv1_w
|
||||
final_conv_b = conv_b + conv1_b
|
||||
|
||||
conv.weight.data.copy_(final_conv_w)
|
||||
conv.bias.data.copy_(final_conv_b)
|
||||
|
||||
self.conv = conv
|
||||
del self.conv1
|
||||
|
||||
class CIB(nn.Module):
|
||||
"""Standard bottleneck."""
|
||||
|
||||
def __init__(self, c1, c2, shortcut=True, e=0.5, lk=False):
|
||||
"""Initializes a bottleneck module with given input/output channels, shortcut option, group, kernels, and
|
||||
expansion.
|
||||
"""
|
||||
super().__init__()
|
||||
c_ = int(c2 * e) # hidden channels
|
||||
self.cv1 = nn.Sequential(
|
||||
Conv(c1, c1, 3, g=c1),
|
||||
Conv(c1, 2 * c_, 1),
|
||||
Conv(2 * c_, 2 * c_, 3, g=2 * c_) if not lk else RepVGGDW(2 * c_),
|
||||
Conv(2 * c_, c2, 1),
|
||||
Conv(c2, c2, 3, g=c2),
|
||||
)
|
||||
|
||||
self.add = shortcut and c1 == c2
|
||||
|
||||
def forward(self, x):
|
||||
"""'forward()' applies the YOLO FPN to input data."""
|
||||
return x + self.cv1(x) if self.add else self.cv1(x)
|
||||
|
||||
class C2fCIB(C2f):
|
||||
"""Faster Implementation of CSP Bottleneck with 2 convolutions."""
|
||||
|
||||
def __init__(self, c1, c2, n=1, shortcut=False, lk=False, g=1, e=0.5):
|
||||
"""Initialize CSP bottleneck layer with two convolutions with arguments ch_in, ch_out, number, shortcut, groups,
|
||||
expansion.
|
||||
"""
|
||||
super().__init__(c1, c2, n, shortcut, g, e)
|
||||
self.m = nn.ModuleList(CIB(self.c, self.c, shortcut, e=1.0, lk=lk) for _ in range(n))
|
||||
|
||||
|
||||
class Attention(nn.Module):
|
||||
def __init__(self, dim, num_heads=8,
|
||||
attn_ratio=0.5):
|
||||
super().__init__()
|
||||
self.num_heads = num_heads
|
||||
self.head_dim = dim // num_heads
|
||||
self.key_dim = int(self.head_dim * attn_ratio)
|
||||
self.scale = self.key_dim ** -0.5
|
||||
nh_kd = nh_kd = self.key_dim * num_heads
|
||||
h = dim + nh_kd * 2
|
||||
self.qkv = Conv(dim, h, 1, act=False)
|
||||
self.proj = Conv(dim, dim, 1, act=False)
|
||||
self.pe = Conv(dim, dim, 3, 1, g=dim, act=False)
|
||||
|
||||
def forward(self, x):
|
||||
B, C, H, W = x.shape
|
||||
N = H * W
|
||||
qkv = self.qkv(x)
|
||||
q, k, v = qkv.view(B, self.num_heads, self.key_dim*2 + self.head_dim, N).split([self.key_dim, self.key_dim, self.head_dim], dim=2)
|
||||
|
||||
attn = (
|
||||
(q.transpose(-2, -1) @ k) * self.scale
|
||||
)
|
||||
attn = attn.softmax(dim=-1)
|
||||
x = (v @ attn.transpose(-2, -1)).view(B, C, H, W) + self.pe(v.reshape(B, C, H, W))
|
||||
x = self.proj(x)
|
||||
return x
|
||||
|
||||
class PSA(nn.Module):
|
||||
|
||||
def __init__(self, c1, c2, e=0.5):
|
||||
super().__init__()
|
||||
assert(c1 == c2)
|
||||
self.c = int(c1 * e)
|
||||
self.cv1 = Conv(c1, 2 * self.c, 1, 1)
|
||||
self.cv2 = Conv(2 * self.c, c1, 1)
|
||||
|
||||
self.attn = Attention(self.c, attn_ratio=0.5, num_heads=self.c // 64)
|
||||
self.ffn = nn.Sequential(
|
||||
Conv(self.c, self.c*2, 1),
|
||||
Conv(self.c*2, self.c, 1, act=False)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
a, b = self.cv1(x).split((self.c, self.c), dim=1)
|
||||
b = b + self.attn(b)
|
||||
b = b + self.ffn(b)
|
||||
return self.cv2(torch.cat((a, b), 1))
|
||||
|
||||
class SCDown(nn.Module):
|
||||
def __init__(self, c1, c2, k, s):
|
||||
super().__init__()
|
||||
self.cv1 = Conv(c1, c2, 1, 1)
|
||||
self.cv2 = Conv(c2, c2, k=k, s=s, g=c2, act=False)
|
||||
|
||||
def forward(self, x):
|
||||
return self.cv2(self.cv1(x))
|
333
ultralytics/nn/modules/conv.py
Normal file
333
ultralytics/nn/modules/conv.py
Normal file
@ -0,0 +1,333 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
"""Convolution modules."""
|
||||
|
||||
import math
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
__all__ = (
|
||||
"Conv",
|
||||
"Conv2",
|
||||
"LightConv",
|
||||
"DWConv",
|
||||
"DWConvTranspose2d",
|
||||
"ConvTranspose",
|
||||
"Focus",
|
||||
"GhostConv",
|
||||
"ChannelAttention",
|
||||
"SpatialAttention",
|
||||
"CBAM",
|
||||
"Concat",
|
||||
"RepConv",
|
||||
)
|
||||
|
||||
|
||||
def autopad(k, p=None, d=1): # kernel, padding, dilation
|
||||
"""Pad to 'same' shape outputs."""
|
||||
if d > 1:
|
||||
k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size
|
||||
if p is None:
|
||||
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
|
||||
return p
|
||||
|
||||
|
||||
class Conv(nn.Module):
|
||||
"""Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
|
||||
|
||||
default_act = nn.SiLU() # default activation
|
||||
|
||||
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
|
||||
"""Initialize Conv layer with given arguments including activation."""
|
||||
super().__init__()
|
||||
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
|
||||
self.bn = nn.BatchNorm2d(c2)
|
||||
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
|
||||
|
||||
def forward(self, x):
|
||||
"""Apply convolution, batch normalization and activation to input tensor."""
|
||||
return self.act(self.bn(self.conv(x)))
|
||||
|
||||
def forward_fuse(self, x):
|
||||
"""Perform transposed convolution of 2D data."""
|
||||
return self.act(self.conv(x))
|
||||
|
||||
|
||||
class Conv2(Conv):
|
||||
"""Simplified RepConv module with Conv fusing."""
|
||||
|
||||
def __init__(self, c1, c2, k=3, s=1, p=None, g=1, d=1, act=True):
|
||||
"""Initialize Conv layer with given arguments including activation."""
|
||||
super().__init__(c1, c2, k, s, p, g=g, d=d, act=act)
|
||||
self.cv2 = nn.Conv2d(c1, c2, 1, s, autopad(1, p, d), groups=g, dilation=d, bias=False) # add 1x1 conv
|
||||
|
||||
def forward(self, x):
|
||||
"""Apply convolution, batch normalization and activation to input tensor."""
|
||||
return self.act(self.bn(self.conv(x) + self.cv2(x)))
|
||||
|
||||
def forward_fuse(self, x):
|
||||
"""Apply fused convolution, batch normalization and activation to input tensor."""
|
||||
return self.act(self.bn(self.conv(x)))
|
||||
|
||||
def fuse_convs(self):
|
||||
"""Fuse parallel convolutions."""
|
||||
w = torch.zeros_like(self.conv.weight.data)
|
||||
i = [x // 2 for x in w.shape[2:]]
|
||||
w[:, :, i[0] : i[0] + 1, i[1] : i[1] + 1] = self.cv2.weight.data.clone()
|
||||
self.conv.weight.data += w
|
||||
self.__delattr__("cv2")
|
||||
self.forward = self.forward_fuse
|
||||
|
||||
|
||||
class LightConv(nn.Module):
|
||||
"""
|
||||
Light convolution with args(ch_in, ch_out, kernel).
|
||||
|
||||
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
|
||||
"""
|
||||
|
||||
def __init__(self, c1, c2, k=1, act=nn.ReLU()):
|
||||
"""Initialize Conv layer with given arguments including activation."""
|
||||
super().__init__()
|
||||
self.conv1 = Conv(c1, c2, 1, act=False)
|
||||
self.conv2 = DWConv(c2, c2, k, act=act)
|
||||
|
||||
def forward(self, x):
|
||||
"""Apply 2 convolutions to input tensor."""
|
||||
return self.conv2(self.conv1(x))
|
||||
|
||||
|
||||
class DWConv(Conv):
|
||||
"""Depth-wise convolution."""
|
||||
|
||||
def __init__(self, c1, c2, k=1, s=1, d=1, act=True): # ch_in, ch_out, kernel, stride, dilation, activation
|
||||
"""Initialize Depth-wise convolution with given parameters."""
|
||||
super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), d=d, act=act)
|
||||
|
||||
|
||||
class DWConvTranspose2d(nn.ConvTranspose2d):
|
||||
"""Depth-wise transpose convolution."""
|
||||
|
||||
def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0): # ch_in, ch_out, kernel, stride, padding, padding_out
|
||||
"""Initialize DWConvTranspose2d class with given parameters."""
|
||||
super().__init__(c1, c2, k, s, p1, p2, groups=math.gcd(c1, c2))
|
||||
|
||||
|
||||
class ConvTranspose(nn.Module):
|
||||
"""Convolution transpose 2d layer."""
|
||||
|
||||
default_act = nn.SiLU() # default activation
|
||||
|
||||
def __init__(self, c1, c2, k=2, s=2, p=0, bn=True, act=True):
|
||||
"""Initialize ConvTranspose2d layer with batch normalization and activation function."""
|
||||
super().__init__()
|
||||
self.conv_transpose = nn.ConvTranspose2d(c1, c2, k, s, p, bias=not bn)
|
||||
self.bn = nn.BatchNorm2d(c2) if bn else nn.Identity()
|
||||
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
|
||||
|
||||
def forward(self, x):
|
||||
"""Applies transposed convolutions, batch normalization and activation to input."""
|
||||
return self.act(self.bn(self.conv_transpose(x)))
|
||||
|
||||
def forward_fuse(self, x):
|
||||
"""Applies activation and convolution transpose operation to input."""
|
||||
return self.act(self.conv_transpose(x))
|
||||
|
||||
|
||||
class Focus(nn.Module):
|
||||
"""Focus wh information into c-space."""
|
||||
|
||||
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):
|
||||
"""Initializes Focus object with user defined channel, convolution, padding, group and activation values."""
|
||||
super().__init__()
|
||||
self.conv = Conv(c1 * 4, c2, k, s, p, g, act=act)
|
||||
# self.contract = Contract(gain=2)
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Applies convolution to concatenated tensor and returns the output.
|
||||
|
||||
Input shape is (b,c,w,h) and output shape is (b,4c,w/2,h/2).
|
||||
"""
|
||||
return self.conv(torch.cat((x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]), 1))
|
||||
# return self.conv(self.contract(x))
|
||||
|
||||
|
||||
class GhostConv(nn.Module):
|
||||
"""Ghost Convolution https://github.com/huawei-noah/ghostnet."""
|
||||
|
||||
def __init__(self, c1, c2, k=1, s=1, g=1, act=True):
|
||||
"""Initializes the GhostConv object with input channels, output channels, kernel size, stride, groups and
|
||||
activation.
|
||||
"""
|
||||
super().__init__()
|
||||
c_ = c2 // 2 # hidden channels
|
||||
self.cv1 = Conv(c1, c_, k, s, None, g, act=act)
|
||||
self.cv2 = Conv(c_, c_, 5, 1, None, c_, act=act)
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward propagation through a Ghost Bottleneck layer with skip connection."""
|
||||
y = self.cv1(x)
|
||||
return torch.cat((y, self.cv2(y)), 1)
|
||||
|
||||
|
||||
class RepConv(nn.Module):
|
||||
"""
|
||||
RepConv is a basic rep-style block, including training and deploy status.
|
||||
|
||||
This module is used in RT-DETR.
|
||||
Based on https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py
|
||||
"""
|
||||
|
||||
default_act = nn.SiLU() # default activation
|
||||
|
||||
def __init__(self, c1, c2, k=3, s=1, p=1, g=1, d=1, act=True, bn=False, deploy=False):
|
||||
"""Initializes Light Convolution layer with inputs, outputs & optional activation function."""
|
||||
super().__init__()
|
||||
assert k == 3 and p == 1
|
||||
self.g = g
|
||||
self.c1 = c1
|
||||
self.c2 = c2
|
||||
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
|
||||
|
||||
self.bn = nn.BatchNorm2d(num_features=c1) if bn and c2 == c1 and s == 1 else None
|
||||
self.conv1 = Conv(c1, c2, k, s, p=p, g=g, act=False)
|
||||
self.conv2 = Conv(c1, c2, 1, s, p=(p - k // 2), g=g, act=False)
|
||||
|
||||
def forward_fuse(self, x):
|
||||
"""Forward process."""
|
||||
return self.act(self.conv(x))
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward process."""
|
||||
id_out = 0 if self.bn is None else self.bn(x)
|
||||
return self.act(self.conv1(x) + self.conv2(x) + id_out)
|
||||
|
||||
def get_equivalent_kernel_bias(self):
|
||||
"""Returns equivalent kernel and bias by adding 3x3 kernel, 1x1 kernel and identity kernel with their biases."""
|
||||
kernel3x3, bias3x3 = self._fuse_bn_tensor(self.conv1)
|
||||
kernel1x1, bias1x1 = self._fuse_bn_tensor(self.conv2)
|
||||
kernelid, biasid = self._fuse_bn_tensor(self.bn)
|
||||
return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid, bias3x3 + bias1x1 + biasid
|
||||
|
||||
def _pad_1x1_to_3x3_tensor(self, kernel1x1):
|
||||
"""Pads a 1x1 tensor to a 3x3 tensor."""
|
||||
if kernel1x1 is None:
|
||||
return 0
|
||||
else:
|
||||
return torch.nn.functional.pad(kernel1x1, [1, 1, 1, 1])
|
||||
|
||||
def _fuse_bn_tensor(self, branch):
|
||||
"""Generates appropriate kernels and biases for convolution by fusing branches of the neural network."""
|
||||
if branch is None:
|
||||
return 0, 0
|
||||
if isinstance(branch, Conv):
|
||||
kernel = branch.conv.weight
|
||||
running_mean = branch.bn.running_mean
|
||||
running_var = branch.bn.running_var
|
||||
gamma = branch.bn.weight
|
||||
beta = branch.bn.bias
|
||||
eps = branch.bn.eps
|
||||
elif isinstance(branch, nn.BatchNorm2d):
|
||||
if not hasattr(self, "id_tensor"):
|
||||
input_dim = self.c1 // self.g
|
||||
kernel_value = np.zeros((self.c1, input_dim, 3, 3), dtype=np.float32)
|
||||
for i in range(self.c1):
|
||||
kernel_value[i, i % input_dim, 1, 1] = 1
|
||||
self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device)
|
||||
kernel = self.id_tensor
|
||||
running_mean = branch.running_mean
|
||||
running_var = branch.running_var
|
||||
gamma = branch.weight
|
||||
beta = branch.bias
|
||||
eps = branch.eps
|
||||
std = (running_var + eps).sqrt()
|
||||
t = (gamma / std).reshape(-1, 1, 1, 1)
|
||||
return kernel * t, beta - running_mean * gamma / std
|
||||
|
||||
def fuse_convs(self):
|
||||
"""Combines two convolution layers into a single layer and removes unused attributes from the class."""
|
||||
if hasattr(self, "conv"):
|
||||
return
|
||||
kernel, bias = self.get_equivalent_kernel_bias()
|
||||
self.conv = nn.Conv2d(
|
||||
in_channels=self.conv1.conv.in_channels,
|
||||
out_channels=self.conv1.conv.out_channels,
|
||||
kernel_size=self.conv1.conv.kernel_size,
|
||||
stride=self.conv1.conv.stride,
|
||||
padding=self.conv1.conv.padding,
|
||||
dilation=self.conv1.conv.dilation,
|
||||
groups=self.conv1.conv.groups,
|
||||
bias=True,
|
||||
).requires_grad_(False)
|
||||
self.conv.weight.data = kernel
|
||||
self.conv.bias.data = bias
|
||||
for para in self.parameters():
|
||||
para.detach_()
|
||||
self.__delattr__("conv1")
|
||||
self.__delattr__("conv2")
|
||||
if hasattr(self, "nm"):
|
||||
self.__delattr__("nm")
|
||||
if hasattr(self, "bn"):
|
||||
self.__delattr__("bn")
|
||||
if hasattr(self, "id_tensor"):
|
||||
self.__delattr__("id_tensor")
|
||||
|
||||
|
||||
class ChannelAttention(nn.Module):
|
||||
"""Channel-attention module https://github.com/open-mmlab/mmdetection/tree/v3.0.0rc1/configs/rtmdet."""
|
||||
|
||||
def __init__(self, channels: int) -> None:
|
||||
"""Initializes the class and sets the basic configurations and instance variables required."""
|
||||
super().__init__()
|
||||
self.pool = nn.AdaptiveAvgPool2d(1)
|
||||
self.fc = nn.Conv2d(channels, channels, 1, 1, 0, bias=True)
|
||||
self.act = nn.Sigmoid()
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""Applies forward pass using activation on convolutions of the input, optionally using batch normalization."""
|
||||
return x * self.act(self.fc(self.pool(x)))
|
||||
|
||||
|
||||
class SpatialAttention(nn.Module):
|
||||
"""Spatial-attention module."""
|
||||
|
||||
def __init__(self, kernel_size=7):
|
||||
"""Initialize Spatial-attention module with kernel size argument."""
|
||||
super().__init__()
|
||||
assert kernel_size in (3, 7), "kernel size must be 3 or 7"
|
||||
padding = 3 if kernel_size == 7 else 1
|
||||
self.cv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
|
||||
self.act = nn.Sigmoid()
|
||||
|
||||
def forward(self, x):
|
||||
"""Apply channel and spatial attention on input for feature recalibration."""
|
||||
return x * self.act(self.cv1(torch.cat([torch.mean(x, 1, keepdim=True), torch.max(x, 1, keepdim=True)[0]], 1)))
|
||||
|
||||
|
||||
class CBAM(nn.Module):
|
||||
"""Convolutional Block Attention Module."""
|
||||
|
||||
def __init__(self, c1, kernel_size=7):
|
||||
"""Initialize CBAM with given input channel (c1) and kernel size."""
|
||||
super().__init__()
|
||||
self.channel_attention = ChannelAttention(c1)
|
||||
self.spatial_attention = SpatialAttention(kernel_size)
|
||||
|
||||
def forward(self, x):
|
||||
"""Applies the forward pass through C1 module."""
|
||||
return self.spatial_attention(self.channel_attention(x))
|
||||
|
||||
|
||||
class Concat(nn.Module):
|
||||
"""Concatenate a list of tensors along dimension."""
|
||||
|
||||
def __init__(self, dimension=1):
|
||||
"""Concatenates a list of tensors along a specified dimension."""
|
||||
super().__init__()
|
||||
self.d = dimension
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward pass for the YOLOv8 mask Proto module."""
|
||||
return torch.cat(x, self.d)
|
545
ultralytics/nn/modules/head.py
Normal file
545
ultralytics/nn/modules/head.py
Normal file
@ -0,0 +1,545 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
"""Model head modules."""
|
||||
|
||||
import math
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.nn.init import constant_, xavier_uniform_
|
||||
|
||||
from ultralytics.utils.tal import TORCH_1_10, dist2bbox, dist2rbox, make_anchors
|
||||
from .block import DFL, Proto, ContrastiveHead, BNContrastiveHead
|
||||
from .conv import Conv
|
||||
from .transformer import MLP, DeformableTransformerDecoder, DeformableTransformerDecoderLayer
|
||||
from .utils import bias_init_with_prob, linear_init
|
||||
import copy
|
||||
from ultralytics.utils import ops
|
||||
|
||||
__all__ = "Detect", "Segment", "Pose", "Classify", "OBB", "RTDETRDecoder"
|
||||
|
||||
|
||||
class Detect(nn.Module):
|
||||
"""YOLOv8 Detect head for detection models."""
|
||||
|
||||
dynamic = False # force grid reconstruction
|
||||
export = False # export mode
|
||||
shape = None
|
||||
anchors = torch.empty(0) # init
|
||||
strides = torch.empty(0) # init
|
||||
|
||||
def __init__(self, nc=80, ch=()):
|
||||
"""Initializes the YOLOv8 detection layer with specified number of classes and channels."""
|
||||
super().__init__()
|
||||
self.nc = nc # number of classes
|
||||
self.nl = len(ch) # number of detection layers
|
||||
self.reg_max = 16 # DFL channels (ch[0] // 16 to scale 4/8/12/16/20 for n/s/m/l/x)
|
||||
self.no = nc + self.reg_max * 4 # number of outputs per anchor
|
||||
self.stride = torch.zeros(self.nl) # strides computed during build
|
||||
c2, c3 = max((16, ch[0] // 4, self.reg_max * 4)), max(ch[0], min(self.nc, 100)) # channels
|
||||
self.cv2 = nn.ModuleList(
|
||||
nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch
|
||||
)
|
||||
self.cv3 = nn.ModuleList(nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch)
|
||||
self.dfl = DFL(self.reg_max) if self.reg_max > 1 else nn.Identity()
|
||||
|
||||
def inference(self, x):
|
||||
# Inference path
|
||||
shape = x[0].shape # BCHW
|
||||
x_cat = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2)
|
||||
if self.dynamic or self.shape != shape:
|
||||
self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))
|
||||
self.shape = shape
|
||||
|
||||
if self.export and self.format in ("saved_model", "pb", "tflite", "edgetpu", "tfjs"): # avoid TF FlexSplitV ops
|
||||
box = x_cat[:, : self.reg_max * 4]
|
||||
cls = x_cat[:, self.reg_max * 4 :]
|
||||
else:
|
||||
box, cls = x_cat.split((self.reg_max * 4, self.nc), 1)
|
||||
|
||||
if self.export and self.format in ("tflite", "edgetpu"):
|
||||
# Precompute normalization factor to increase numerical stability
|
||||
# See https://github.com/ultralytics/ultralytics/issues/7371
|
||||
grid_h = shape[2]
|
||||
grid_w = shape[3]
|
||||
grid_size = torch.tensor([grid_w, grid_h, grid_w, grid_h], device=box.device).reshape(1, 4, 1)
|
||||
norm = self.strides / (self.stride[0] * grid_size)
|
||||
dbox = self.decode_bboxes(self.dfl(box) * norm, self.anchors.unsqueeze(0) * norm[:, :2])
|
||||
else:
|
||||
dbox = self.decode_bboxes(self.dfl(box), self.anchors.unsqueeze(0)) * self.strides
|
||||
|
||||
y = torch.cat((dbox, cls.sigmoid()), 1)
|
||||
return y if self.export else (y, x)
|
||||
|
||||
def forward_feat(self, x, cv2, cv3):
|
||||
y = []
|
||||
for i in range(self.nl):
|
||||
y.append(torch.cat((cv2[i](x[i]), cv3[i](x[i])), 1))
|
||||
return y
|
||||
|
||||
def forward(self, x):
|
||||
"""Concatenates and returns predicted bounding boxes and class probabilities."""
|
||||
y = self.forward_feat(x, self.cv2, self.cv3)
|
||||
|
||||
if self.training:
|
||||
return y
|
||||
|
||||
return self.inference(y)
|
||||
|
||||
def bias_init(self):
|
||||
"""Initialize Detect() biases, WARNING: requires stride availability."""
|
||||
m = self # self.model[-1] # Detect() module
|
||||
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
|
||||
# ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency
|
||||
for a, b, s in zip(m.cv2, m.cv3, m.stride): # from
|
||||
a[-1].bias.data[:] = 1.0 # box
|
||||
b[-1].bias.data[: m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (.01 objects, 80 classes, 640 img)
|
||||
|
||||
def decode_bboxes(self, bboxes, anchors):
|
||||
"""Decode bounding boxes."""
|
||||
if self.export:
|
||||
return dist2bbox(bboxes, anchors, xywh=False, dim=1)
|
||||
return dist2bbox(bboxes, anchors, xywh=True, dim=1)
|
||||
|
||||
|
||||
class Segment(Detect):
|
||||
"""YOLOv8 Segment head for segmentation models."""
|
||||
|
||||
def __init__(self, nc=80, nm=32, npr=256, ch=()):
|
||||
"""Initialize the YOLO model attributes such as the number of masks, prototypes, and the convolution layers."""
|
||||
super().__init__(nc, ch)
|
||||
self.nm = nm # number of masks
|
||||
self.npr = npr # number of protos
|
||||
self.proto = Proto(ch[0], self.npr, self.nm) # protos
|
||||
self.detect = Detect.forward
|
||||
|
||||
c4 = max(ch[0] // 4, self.nm)
|
||||
self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nm, 1)) for x in ch)
|
||||
|
||||
def forward(self, x):
|
||||
"""Return model outputs and mask coefficients if training, otherwise return outputs and mask coefficients."""
|
||||
p = self.proto(x[0]) # mask protos
|
||||
bs = p.shape[0] # batch size
|
||||
|
||||
mc = torch.cat([self.cv4[i](x[i]).view(bs, self.nm, -1) for i in range(self.nl)], 2) # mask coefficients
|
||||
x = self.detect(self, x)
|
||||
if self.training:
|
||||
return x, mc, p
|
||||
return (torch.cat([x, mc], 1), p) if self.export else (torch.cat([x[0], mc], 1), (x[1], mc, p))
|
||||
|
||||
|
||||
class OBB(Detect):
|
||||
"""YOLOv8 OBB detection head for detection with rotation models."""
|
||||
|
||||
def __init__(self, nc=80, ne=1, ch=()):
|
||||
"""Initialize OBB with number of classes `nc` and layer channels `ch`."""
|
||||
super().__init__(nc, ch)
|
||||
self.ne = ne # number of extra parameters
|
||||
self.detect = Detect.forward
|
||||
|
||||
c4 = max(ch[0] // 4, self.ne)
|
||||
self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.ne, 1)) for x in ch)
|
||||
|
||||
def forward(self, x):
|
||||
"""Concatenates and returns predicted bounding boxes and class probabilities."""
|
||||
bs = x[0].shape[0] # batch size
|
||||
angle = torch.cat([self.cv4[i](x[i]).view(bs, self.ne, -1) for i in range(self.nl)], 2) # OBB theta logits
|
||||
# NOTE: set `angle` as an attribute so that `decode_bboxes` could use it.
|
||||
angle = (angle.sigmoid() - 0.25) * math.pi # [-pi/4, 3pi/4]
|
||||
# angle = angle.sigmoid() * math.pi / 2 # [0, pi/2]
|
||||
if not self.training:
|
||||
self.angle = angle
|
||||
x = self.detect(self, x)
|
||||
if self.training:
|
||||
return x, angle
|
||||
return torch.cat([x, angle], 1) if self.export else (torch.cat([x[0], angle], 1), (x[1], angle))
|
||||
|
||||
def decode_bboxes(self, bboxes, anchors):
|
||||
"""Decode rotated bounding boxes."""
|
||||
return dist2rbox(bboxes, self.angle, anchors, dim=1)
|
||||
|
||||
|
||||
class Pose(Detect):
|
||||
"""YOLOv8 Pose head for keypoints models."""
|
||||
|
||||
def __init__(self, nc=80, kpt_shape=(17, 3), ch=()):
|
||||
"""Initialize YOLO network with default parameters and Convolutional Layers."""
|
||||
super().__init__(nc, ch)
|
||||
self.kpt_shape = kpt_shape # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
|
||||
self.nk = kpt_shape[0] * kpt_shape[1] # number of keypoints total
|
||||
self.detect = Detect.forward
|
||||
|
||||
c4 = max(ch[0] // 4, self.nk)
|
||||
self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nk, 1)) for x in ch)
|
||||
|
||||
def forward(self, x):
|
||||
"""Perform forward pass through YOLO model and return predictions."""
|
||||
bs = x[0].shape[0] # batch size
|
||||
kpt = torch.cat([self.cv4[i](x[i]).view(bs, self.nk, -1) for i in range(self.nl)], -1) # (bs, 17*3, h*w)
|
||||
x = self.detect(self, x)
|
||||
if self.training:
|
||||
return x, kpt
|
||||
pred_kpt = self.kpts_decode(bs, kpt)
|
||||
return torch.cat([x, pred_kpt], 1) if self.export else (torch.cat([x[0], pred_kpt], 1), (x[1], kpt))
|
||||
|
||||
def kpts_decode(self, bs, kpts):
|
||||
"""Decodes keypoints."""
|
||||
ndim = self.kpt_shape[1]
|
||||
if self.export: # required for TFLite export to avoid 'PLACEHOLDER_FOR_GREATER_OP_CODES' bug
|
||||
y = kpts.view(bs, *self.kpt_shape, -1)
|
||||
a = (y[:, :, :2] * 2.0 + (self.anchors - 0.5)) * self.strides
|
||||
if ndim == 3:
|
||||
a = torch.cat((a, y[:, :, 2:3].sigmoid()), 2)
|
||||
return a.view(bs, self.nk, -1)
|
||||
else:
|
||||
y = kpts.clone()
|
||||
if ndim == 3:
|
||||
y[:, 2::3] = y[:, 2::3].sigmoid() # sigmoid (WARNING: inplace .sigmoid_() Apple MPS bug)
|
||||
y[:, 0::ndim] = (y[:, 0::ndim] * 2.0 + (self.anchors[0] - 0.5)) * self.strides
|
||||
y[:, 1::ndim] = (y[:, 1::ndim] * 2.0 + (self.anchors[1] - 0.5)) * self.strides
|
||||
return y
|
||||
|
||||
|
||||
class Classify(nn.Module):
|
||||
"""YOLOv8 classification head, i.e. x(b,c1,20,20) to x(b,c2)."""
|
||||
|
||||
def __init__(self, c1, c2, k=1, s=1, p=None, g=1):
|
||||
"""Initializes YOLOv8 classification head with specified input and output channels, kernel size, stride,
|
||||
padding, and groups.
|
||||
"""
|
||||
super().__init__()
|
||||
c_ = 1280 # efficientnet_b0 size
|
||||
self.conv = Conv(c1, c_, k, s, p, g)
|
||||
self.pool = nn.AdaptiveAvgPool2d(1) # to x(b,c_,1,1)
|
||||
self.drop = nn.Dropout(p=0.0, inplace=True)
|
||||
self.linear = nn.Linear(c_, c2) # to x(b,c2)
|
||||
|
||||
def forward(self, x):
|
||||
"""Performs a forward pass of the YOLO model on input image data."""
|
||||
if isinstance(x, list):
|
||||
x = torch.cat(x, 1)
|
||||
x = self.linear(self.drop(self.pool(self.conv(x)).flatten(1)))
|
||||
return x if self.training else x.softmax(1)
|
||||
|
||||
|
||||
class WorldDetect(Detect):
|
||||
def __init__(self, nc=80, embed=512, with_bn=False, ch=()):
|
||||
"""Initialize YOLOv8 detection layer with nc classes and layer channels ch."""
|
||||
super().__init__(nc, ch)
|
||||
c3 = max(ch[0], min(self.nc, 100))
|
||||
self.cv3 = nn.ModuleList(nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, embed, 1)) for x in ch)
|
||||
self.cv4 = nn.ModuleList(BNContrastiveHead(embed) if with_bn else ContrastiveHead() for _ in ch)
|
||||
|
||||
def forward(self, x, text):
|
||||
"""Concatenates and returns predicted bounding boxes and class probabilities."""
|
||||
for i in range(self.nl):
|
||||
x[i] = torch.cat((self.cv2[i](x[i]), self.cv4[i](self.cv3[i](x[i]), text)), 1)
|
||||
if self.training:
|
||||
return x
|
||||
|
||||
# Inference path
|
||||
shape = x[0].shape # BCHW
|
||||
x_cat = torch.cat([xi.view(shape[0], self.nc + self.reg_max * 4, -1) for xi in x], 2)
|
||||
if self.dynamic or self.shape != shape:
|
||||
self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))
|
||||
self.shape = shape
|
||||
|
||||
if self.export and self.format in ("saved_model", "pb", "tflite", "edgetpu", "tfjs"): # avoid TF FlexSplitV ops
|
||||
box = x_cat[:, : self.reg_max * 4]
|
||||
cls = x_cat[:, self.reg_max * 4 :]
|
||||
else:
|
||||
box, cls = x_cat.split((self.reg_max * 4, self.nc), 1)
|
||||
|
||||
if self.export and self.format in ("tflite", "edgetpu"):
|
||||
# Precompute normalization factor to increase numerical stability
|
||||
# See https://github.com/ultralytics/ultralytics/issues/7371
|
||||
grid_h = shape[2]
|
||||
grid_w = shape[3]
|
||||
grid_size = torch.tensor([grid_w, grid_h, grid_w, grid_h], device=box.device).reshape(1, 4, 1)
|
||||
norm = self.strides / (self.stride[0] * grid_size)
|
||||
dbox = self.decode_bboxes(self.dfl(box) * norm, self.anchors.unsqueeze(0) * norm[:, :2])
|
||||
else:
|
||||
dbox = self.decode_bboxes(self.dfl(box), self.anchors.unsqueeze(0)) * self.strides
|
||||
|
||||
y = torch.cat((dbox, cls.sigmoid()), 1)
|
||||
return y if self.export else (y, x)
|
||||
|
||||
|
||||
class RTDETRDecoder(nn.Module):
|
||||
"""
|
||||
Real-Time Deformable Transformer Decoder (RTDETRDecoder) module for object detection.
|
||||
|
||||
This decoder module utilizes Transformer architecture along with deformable convolutions to predict bounding boxes
|
||||
and class labels for objects in an image. It integrates features from multiple layers and runs through a series of
|
||||
Transformer decoder layers to output the final predictions.
|
||||
"""
|
||||
|
||||
export = False # export mode
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
nc=80,
|
||||
ch=(512, 1024, 2048),
|
||||
hd=256, # hidden dim
|
||||
nq=300, # num queries
|
||||
ndp=4, # num decoder points
|
||||
nh=8, # num head
|
||||
ndl=6, # num decoder layers
|
||||
d_ffn=1024, # dim of feedforward
|
||||
dropout=0.0,
|
||||
act=nn.ReLU(),
|
||||
eval_idx=-1,
|
||||
# Training args
|
||||
nd=100, # num denoising
|
||||
label_noise_ratio=0.5,
|
||||
box_noise_scale=1.0,
|
||||
learnt_init_query=False,
|
||||
):
|
||||
"""
|
||||
Initializes the RTDETRDecoder module with the given parameters.
|
||||
|
||||
Args:
|
||||
nc (int): Number of classes. Default is 80.
|
||||
ch (tuple): Channels in the backbone feature maps. Default is (512, 1024, 2048).
|
||||
hd (int): Dimension of hidden layers. Default is 256.
|
||||
nq (int): Number of query points. Default is 300.
|
||||
ndp (int): Number of decoder points. Default is 4.
|
||||
nh (int): Number of heads in multi-head attention. Default is 8.
|
||||
ndl (int): Number of decoder layers. Default is 6.
|
||||
d_ffn (int): Dimension of the feed-forward networks. Default is 1024.
|
||||
dropout (float): Dropout rate. Default is 0.
|
||||
act (nn.Module): Activation function. Default is nn.ReLU.
|
||||
eval_idx (int): Evaluation index. Default is -1.
|
||||
nd (int): Number of denoising. Default is 100.
|
||||
label_noise_ratio (float): Label noise ratio. Default is 0.5.
|
||||
box_noise_scale (float): Box noise scale. Default is 1.0.
|
||||
learnt_init_query (bool): Whether to learn initial query embeddings. Default is False.
|
||||
"""
|
||||
super().__init__()
|
||||
self.hidden_dim = hd
|
||||
self.nhead = nh
|
||||
self.nl = len(ch) # num level
|
||||
self.nc = nc
|
||||
self.num_queries = nq
|
||||
self.num_decoder_layers = ndl
|
||||
|
||||
# Backbone feature projection
|
||||
self.input_proj = nn.ModuleList(nn.Sequential(nn.Conv2d(x, hd, 1, bias=False), nn.BatchNorm2d(hd)) for x in ch)
|
||||
# NOTE: simplified version but it's not consistent with .pt weights.
|
||||
# self.input_proj = nn.ModuleList(Conv(x, hd, act=False) for x in ch)
|
||||
|
||||
# Transformer module
|
||||
decoder_layer = DeformableTransformerDecoderLayer(hd, nh, d_ffn, dropout, act, self.nl, ndp)
|
||||
self.decoder = DeformableTransformerDecoder(hd, decoder_layer, ndl, eval_idx)
|
||||
|
||||
# Denoising part
|
||||
self.denoising_class_embed = nn.Embedding(nc, hd)
|
||||
self.num_denoising = nd
|
||||
self.label_noise_ratio = label_noise_ratio
|
||||
self.box_noise_scale = box_noise_scale
|
||||
|
||||
# Decoder embedding
|
||||
self.learnt_init_query = learnt_init_query
|
||||
if learnt_init_query:
|
||||
self.tgt_embed = nn.Embedding(nq, hd)
|
||||
self.query_pos_head = MLP(4, 2 * hd, hd, num_layers=2)
|
||||
|
||||
# Encoder head
|
||||
self.enc_output = nn.Sequential(nn.Linear(hd, hd), nn.LayerNorm(hd))
|
||||
self.enc_score_head = nn.Linear(hd, nc)
|
||||
self.enc_bbox_head = MLP(hd, hd, 4, num_layers=3)
|
||||
|
||||
# Decoder head
|
||||
self.dec_score_head = nn.ModuleList([nn.Linear(hd, nc) for _ in range(ndl)])
|
||||
self.dec_bbox_head = nn.ModuleList([MLP(hd, hd, 4, num_layers=3) for _ in range(ndl)])
|
||||
|
||||
self._reset_parameters()
|
||||
|
||||
def forward(self, x, batch=None):
|
||||
"""Runs the forward pass of the module, returning bounding box and classification scores for the input."""
|
||||
from ultralytics.models.utils.ops import get_cdn_group
|
||||
|
||||
# Input projection and embedding
|
||||
feats, shapes = self._get_encoder_input(x)
|
||||
|
||||
# Prepare denoising training
|
||||
dn_embed, dn_bbox, attn_mask, dn_meta = get_cdn_group(
|
||||
batch,
|
||||
self.nc,
|
||||
self.num_queries,
|
||||
self.denoising_class_embed.weight,
|
||||
self.num_denoising,
|
||||
self.label_noise_ratio,
|
||||
self.box_noise_scale,
|
||||
self.training,
|
||||
)
|
||||
|
||||
embed, refer_bbox, enc_bboxes, enc_scores = self._get_decoder_input(feats, shapes, dn_embed, dn_bbox)
|
||||
|
||||
# Decoder
|
||||
dec_bboxes, dec_scores = self.decoder(
|
||||
embed,
|
||||
refer_bbox,
|
||||
feats,
|
||||
shapes,
|
||||
self.dec_bbox_head,
|
||||
self.dec_score_head,
|
||||
self.query_pos_head,
|
||||
attn_mask=attn_mask,
|
||||
)
|
||||
x = dec_bboxes, dec_scores, enc_bboxes, enc_scores, dn_meta
|
||||
if self.training:
|
||||
return x
|
||||
# (bs, 300, 4+nc)
|
||||
y = torch.cat((dec_bboxes.squeeze(0), dec_scores.squeeze(0).sigmoid()), -1)
|
||||
return y if self.export else (y, x)
|
||||
|
||||
def _generate_anchors(self, shapes, grid_size=0.05, dtype=torch.float32, device="cpu", eps=1e-2):
|
||||
"""Generates anchor bounding boxes for given shapes with specific grid size and validates them."""
|
||||
anchors = []
|
||||
for i, (h, w) in enumerate(shapes):
|
||||
sy = torch.arange(end=h, dtype=dtype, device=device)
|
||||
sx = torch.arange(end=w, dtype=dtype, device=device)
|
||||
grid_y, grid_x = torch.meshgrid(sy, sx, indexing="ij") if TORCH_1_10 else torch.meshgrid(sy, sx)
|
||||
grid_xy = torch.stack([grid_x, grid_y], -1) # (h, w, 2)
|
||||
|
||||
valid_WH = torch.tensor([w, h], dtype=dtype, device=device)
|
||||
grid_xy = (grid_xy.unsqueeze(0) + 0.5) / valid_WH # (1, h, w, 2)
|
||||
wh = torch.ones_like(grid_xy, dtype=dtype, device=device) * grid_size * (2.0**i)
|
||||
anchors.append(torch.cat([grid_xy, wh], -1).view(-1, h * w, 4)) # (1, h*w, 4)
|
||||
|
||||
anchors = torch.cat(anchors, 1) # (1, h*w*nl, 4)
|
||||
valid_mask = ((anchors > eps) & (anchors < 1 - eps)).all(-1, keepdim=True) # 1, h*w*nl, 1
|
||||
anchors = torch.log(anchors / (1 - anchors))
|
||||
anchors = anchors.masked_fill(~valid_mask, float("inf"))
|
||||
return anchors, valid_mask
|
||||
|
||||
def _get_encoder_input(self, x):
|
||||
"""Processes and returns encoder inputs by getting projection features from input and concatenating them."""
|
||||
# Get projection features
|
||||
x = [self.input_proj[i](feat) for i, feat in enumerate(x)]
|
||||
# Get encoder inputs
|
||||
feats = []
|
||||
shapes = []
|
||||
for feat in x:
|
||||
h, w = feat.shape[2:]
|
||||
# [b, c, h, w] -> [b, h*w, c]
|
||||
feats.append(feat.flatten(2).permute(0, 2, 1))
|
||||
# [nl, 2]
|
||||
shapes.append([h, w])
|
||||
|
||||
# [b, h*w, c]
|
||||
feats = torch.cat(feats, 1)
|
||||
return feats, shapes
|
||||
|
||||
def _get_decoder_input(self, feats, shapes, dn_embed=None, dn_bbox=None):
|
||||
"""Generates and prepares the input required for the decoder from the provided features and shapes."""
|
||||
bs = feats.shape[0]
|
||||
# Prepare input for decoder
|
||||
anchors, valid_mask = self._generate_anchors(shapes, dtype=feats.dtype, device=feats.device)
|
||||
features = self.enc_output(valid_mask * feats) # bs, h*w, 256
|
||||
|
||||
enc_outputs_scores = self.enc_score_head(features) # (bs, h*w, nc)
|
||||
|
||||
# Query selection
|
||||
# (bs, num_queries)
|
||||
topk_ind = torch.topk(enc_outputs_scores.max(-1).values, self.num_queries, dim=1).indices.view(-1)
|
||||
# (bs, num_queries)
|
||||
batch_ind = torch.arange(end=bs, dtype=topk_ind.dtype).unsqueeze(-1).repeat(1, self.num_queries).view(-1)
|
||||
|
||||
# (bs, num_queries, 256)
|
||||
top_k_features = features[batch_ind, topk_ind].view(bs, self.num_queries, -1)
|
||||
# (bs, num_queries, 4)
|
||||
top_k_anchors = anchors[:, topk_ind].view(bs, self.num_queries, -1)
|
||||
|
||||
# Dynamic anchors + static content
|
||||
refer_bbox = self.enc_bbox_head(top_k_features) + top_k_anchors
|
||||
|
||||
enc_bboxes = refer_bbox.sigmoid()
|
||||
if dn_bbox is not None:
|
||||
refer_bbox = torch.cat([dn_bbox, refer_bbox], 1)
|
||||
enc_scores = enc_outputs_scores[batch_ind, topk_ind].view(bs, self.num_queries, -1)
|
||||
|
||||
embeddings = self.tgt_embed.weight.unsqueeze(0).repeat(bs, 1, 1) if self.learnt_init_query else top_k_features
|
||||
if self.training:
|
||||
refer_bbox = refer_bbox.detach()
|
||||
if not self.learnt_init_query:
|
||||
embeddings = embeddings.detach()
|
||||
if dn_embed is not None:
|
||||
embeddings = torch.cat([dn_embed, embeddings], 1)
|
||||
|
||||
return embeddings, refer_bbox, enc_bboxes, enc_scores
|
||||
|
||||
# TODO
|
||||
def _reset_parameters(self):
|
||||
"""Initializes or resets the parameters of the model's various components with predefined weights and biases."""
|
||||
# Class and bbox head init
|
||||
bias_cls = bias_init_with_prob(0.01) / 80 * self.nc
|
||||
# NOTE: the weight initialization in `linear_init` would cause NaN when training with custom datasets.
|
||||
# linear_init(self.enc_score_head)
|
||||
constant_(self.enc_score_head.bias, bias_cls)
|
||||
constant_(self.enc_bbox_head.layers[-1].weight, 0.0)
|
||||
constant_(self.enc_bbox_head.layers[-1].bias, 0.0)
|
||||
for cls_, reg_ in zip(self.dec_score_head, self.dec_bbox_head):
|
||||
# linear_init(cls_)
|
||||
constant_(cls_.bias, bias_cls)
|
||||
constant_(reg_.layers[-1].weight, 0.0)
|
||||
constant_(reg_.layers[-1].bias, 0.0)
|
||||
|
||||
linear_init(self.enc_output[0])
|
||||
xavier_uniform_(self.enc_output[0].weight)
|
||||
if self.learnt_init_query:
|
||||
xavier_uniform_(self.tgt_embed.weight)
|
||||
xavier_uniform_(self.query_pos_head.layers[0].weight)
|
||||
xavier_uniform_(self.query_pos_head.layers[1].weight)
|
||||
for layer in self.input_proj:
|
||||
xavier_uniform_(layer[0].weight)
|
||||
|
||||
class v10Detect(Detect):
|
||||
|
||||
max_det = 300
|
||||
|
||||
def __init__(self, nc=80, ch=()):
|
||||
super().__init__(nc, ch)
|
||||
c3 = max(ch[0], min(self.nc, 100)) # channels
|
||||
self.cv3 = nn.ModuleList(nn.Sequential(nn.Sequential(Conv(x, x, 3, g=x), Conv(x, c3, 1)), \
|
||||
nn.Sequential(Conv(c3, c3, 3, g=c3), Conv(c3, c3, 1)), \
|
||||
nn.Conv2d(c3, self.nc, 1)) for i, x in enumerate(ch))
|
||||
|
||||
self.one2one_cv2 = copy.deepcopy(self.cv2)
|
||||
self.one2one_cv3 = copy.deepcopy(self.cv3)
|
||||
|
||||
def forward(self, x):
|
||||
# # # ###==============rknn部署增加==========
|
||||
# #if self.export and self.format == "rknn":
|
||||
# y = []
|
||||
# for i in range(self.nl):
|
||||
# y.append(self.one2one_cv2[i](x[i]))
|
||||
# cls = torch.sigmoid(self.one2one_cv3[i](x[i]))
|
||||
# cls_sum = torch.clamp(cls.sum(1, keepdim=True),0,1)
|
||||
# y.append(cls)
|
||||
# return y
|
||||
# # # ###====================================
|
||||
one2one = self.forward_feat([xi.detach() for xi in x], self.one2one_cv2, self.one2one_cv3)
|
||||
if not self.export:
|
||||
one2many = super().forward(x)
|
||||
|
||||
if not self.training:
|
||||
one2one = self.inference(one2one)
|
||||
if not self.export:
|
||||
return {"one2many": one2many, "one2one": one2one}
|
||||
else:
|
||||
assert(self.max_det != -1)
|
||||
boxes, scores, labels = ops.v10postprocess(one2one.permute(0, 2, 1), self.max_det, self.nc)
|
||||
return torch.cat([boxes, scores.unsqueeze(-1), labels.unsqueeze(-1).to(boxes.dtype)], dim=-1)
|
||||
else:
|
||||
return {"one2many": one2many, "one2one": one2one}
|
||||
|
||||
def bias_init(self):
|
||||
super().bias_init()
|
||||
"""Initialize Detect() biases, WARNING: requires stride availability."""
|
||||
m = self # self.model[-1] # Detect() module
|
||||
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
|
||||
# ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency
|
||||
for a, b, s in zip(m.one2one_cv2, m.one2one_cv3, m.stride): # from
|
||||
a[-1].bias.data[:] = 1.0 # box
|
||||
b[-1].bias.data[: m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (.01 objects, 80 classes, 640 img)
|
426
ultralytics/nn/modules/transformer.py
Normal file
426
ultralytics/nn/modules/transformer.py
Normal file
@ -0,0 +1,426 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
"""Transformer modules."""
|
||||
|
||||
import math
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch.nn.init import constant_, xavier_uniform_
|
||||
|
||||
from .conv import Conv
|
||||
from .utils import _get_clones, inverse_sigmoid, multi_scale_deformable_attn_pytorch
|
||||
|
||||
__all__ = (
|
||||
"TransformerEncoderLayer",
|
||||
"TransformerLayer",
|
||||
"TransformerBlock",
|
||||
"MLPBlock",
|
||||
"LayerNorm2d",
|
||||
"AIFI",
|
||||
"DeformableTransformerDecoder",
|
||||
"DeformableTransformerDecoderLayer",
|
||||
"MSDeformAttn",
|
||||
"MLP",
|
||||
)
|
||||
|
||||
|
||||
class TransformerEncoderLayer(nn.Module):
|
||||
"""Defines a single layer of the transformer encoder."""
|
||||
|
||||
def __init__(self, c1, cm=2048, num_heads=8, dropout=0.0, act=nn.GELU(), normalize_before=False):
|
||||
"""Initialize the TransformerEncoderLayer with specified parameters."""
|
||||
super().__init__()
|
||||
from ...utils.torch_utils import TORCH_1_9
|
||||
|
||||
if not TORCH_1_9:
|
||||
raise ModuleNotFoundError(
|
||||
"TransformerEncoderLayer() requires torch>=1.9 to use nn.MultiheadAttention(batch_first=True)."
|
||||
)
|
||||
self.ma = nn.MultiheadAttention(c1, num_heads, dropout=dropout, batch_first=True)
|
||||
# Implementation of Feedforward model
|
||||
self.fc1 = nn.Linear(c1, cm)
|
||||
self.fc2 = nn.Linear(cm, c1)
|
||||
|
||||
self.norm1 = nn.LayerNorm(c1)
|
||||
self.norm2 = nn.LayerNorm(c1)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
self.dropout1 = nn.Dropout(dropout)
|
||||
self.dropout2 = nn.Dropout(dropout)
|
||||
|
||||
self.act = act
|
||||
self.normalize_before = normalize_before
|
||||
|
||||
@staticmethod
|
||||
def with_pos_embed(tensor, pos=None):
|
||||
"""Add position embeddings to the tensor if provided."""
|
||||
return tensor if pos is None else tensor + pos
|
||||
|
||||
def forward_post(self, src, src_mask=None, src_key_padding_mask=None, pos=None):
|
||||
"""Performs forward pass with post-normalization."""
|
||||
q = k = self.with_pos_embed(src, pos)
|
||||
src2 = self.ma(q, k, value=src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0]
|
||||
src = src + self.dropout1(src2)
|
||||
src = self.norm1(src)
|
||||
src2 = self.fc2(self.dropout(self.act(self.fc1(src))))
|
||||
src = src + self.dropout2(src2)
|
||||
return self.norm2(src)
|
||||
|
||||
def forward_pre(self, src, src_mask=None, src_key_padding_mask=None, pos=None):
|
||||
"""Performs forward pass with pre-normalization."""
|
||||
src2 = self.norm1(src)
|
||||
q = k = self.with_pos_embed(src2, pos)
|
||||
src2 = self.ma(q, k, value=src2, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0]
|
||||
src = src + self.dropout1(src2)
|
||||
src2 = self.norm2(src)
|
||||
src2 = self.fc2(self.dropout(self.act(self.fc1(src2))))
|
||||
return src + self.dropout2(src2)
|
||||
|
||||
def forward(self, src, src_mask=None, src_key_padding_mask=None, pos=None):
|
||||
"""Forward propagates the input through the encoder module."""
|
||||
if self.normalize_before:
|
||||
return self.forward_pre(src, src_mask, src_key_padding_mask, pos)
|
||||
return self.forward_post(src, src_mask, src_key_padding_mask, pos)
|
||||
|
||||
|
||||
class AIFI(TransformerEncoderLayer):
|
||||
"""Defines the AIFI transformer layer."""
|
||||
|
||||
def __init__(self, c1, cm=2048, num_heads=8, dropout=0, act=nn.GELU(), normalize_before=False):
|
||||
"""Initialize the AIFI instance with specified parameters."""
|
||||
super().__init__(c1, cm, num_heads, dropout, act, normalize_before)
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward pass for the AIFI transformer layer."""
|
||||
c, h, w = x.shape[1:]
|
||||
pos_embed = self.build_2d_sincos_position_embedding(w, h, c)
|
||||
# Flatten [B, C, H, W] to [B, HxW, C]
|
||||
x = super().forward(x.flatten(2).permute(0, 2, 1), pos=pos_embed.to(device=x.device, dtype=x.dtype))
|
||||
return x.permute(0, 2, 1).view([-1, c, h, w]).contiguous()
|
||||
|
||||
@staticmethod
|
||||
def build_2d_sincos_position_embedding(w, h, embed_dim=256, temperature=10000.0):
|
||||
"""Builds 2D sine-cosine position embedding."""
|
||||
assert embed_dim % 4 == 0, "Embed dimension must be divisible by 4 for 2D sin-cos position embedding"
|
||||
grid_w = torch.arange(w, dtype=torch.float32)
|
||||
grid_h = torch.arange(h, dtype=torch.float32)
|
||||
grid_w, grid_h = torch.meshgrid(grid_w, grid_h, indexing="ij")
|
||||
pos_dim = embed_dim // 4
|
||||
omega = torch.arange(pos_dim, dtype=torch.float32) / pos_dim
|
||||
omega = 1.0 / (temperature**omega)
|
||||
|
||||
out_w = grid_w.flatten()[..., None] @ omega[None]
|
||||
out_h = grid_h.flatten()[..., None] @ omega[None]
|
||||
|
||||
return torch.cat([torch.sin(out_w), torch.cos(out_w), torch.sin(out_h), torch.cos(out_h)], 1)[None]
|
||||
|
||||
|
||||
class TransformerLayer(nn.Module):
|
||||
"""Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance)."""
|
||||
|
||||
def __init__(self, c, num_heads):
|
||||
"""Initializes a self-attention mechanism using linear transformations and multi-head attention."""
|
||||
super().__init__()
|
||||
self.q = nn.Linear(c, c, bias=False)
|
||||
self.k = nn.Linear(c, c, bias=False)
|
||||
self.v = nn.Linear(c, c, bias=False)
|
||||
self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads)
|
||||
self.fc1 = nn.Linear(c, c, bias=False)
|
||||
self.fc2 = nn.Linear(c, c, bias=False)
|
||||
|
||||
def forward(self, x):
|
||||
"""Apply a transformer block to the input x and return the output."""
|
||||
x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x
|
||||
return self.fc2(self.fc1(x)) + x
|
||||
|
||||
|
||||
class TransformerBlock(nn.Module):
|
||||
"""Vision Transformer https://arxiv.org/abs/2010.11929."""
|
||||
|
||||
def __init__(self, c1, c2, num_heads, num_layers):
|
||||
"""Initialize a Transformer module with position embedding and specified number of heads and layers."""
|
||||
super().__init__()
|
||||
self.conv = None
|
||||
if c1 != c2:
|
||||
self.conv = Conv(c1, c2)
|
||||
self.linear = nn.Linear(c2, c2) # learnable position embedding
|
||||
self.tr = nn.Sequential(*(TransformerLayer(c2, num_heads) for _ in range(num_layers)))
|
||||
self.c2 = c2
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward propagates the input through the bottleneck module."""
|
||||
if self.conv is not None:
|
||||
x = self.conv(x)
|
||||
b, _, w, h = x.shape
|
||||
p = x.flatten(2).permute(2, 0, 1)
|
||||
return self.tr(p + self.linear(p)).permute(1, 2, 0).reshape(b, self.c2, w, h)
|
||||
|
||||
|
||||
class MLPBlock(nn.Module):
|
||||
"""Implements a single block of a multi-layer perceptron."""
|
||||
|
||||
def __init__(self, embedding_dim, mlp_dim, act=nn.GELU):
|
||||
"""Initialize the MLPBlock with specified embedding dimension, MLP dimension, and activation function."""
|
||||
super().__init__()
|
||||
self.lin1 = nn.Linear(embedding_dim, mlp_dim)
|
||||
self.lin2 = nn.Linear(mlp_dim, embedding_dim)
|
||||
self.act = act()
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""Forward pass for the MLPBlock."""
|
||||
return self.lin2(self.act(self.lin1(x)))
|
||||
|
||||
|
||||
class MLP(nn.Module):
|
||||
"""Implements a simple multi-layer perceptron (also called FFN)."""
|
||||
|
||||
def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
|
||||
"""Initialize the MLP with specified input, hidden, output dimensions and number of layers."""
|
||||
super().__init__()
|
||||
self.num_layers = num_layers
|
||||
h = [hidden_dim] * (num_layers - 1)
|
||||
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward pass for the entire MLP."""
|
||||
for i, layer in enumerate(self.layers):
|
||||
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
|
||||
return x
|
||||
|
||||
|
||||
class LayerNorm2d(nn.Module):
|
||||
"""
|
||||
2D Layer Normalization module inspired by Detectron2 and ConvNeXt implementations.
|
||||
|
||||
Original implementations in
|
||||
https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py
|
||||
and
|
||||
https://github.com/facebookresearch/ConvNeXt/blob/main/models/convnext.py.
|
||||
"""
|
||||
|
||||
def __init__(self, num_channels, eps=1e-6):
|
||||
"""Initialize LayerNorm2d with the given parameters."""
|
||||
super().__init__()
|
||||
self.weight = nn.Parameter(torch.ones(num_channels))
|
||||
self.bias = nn.Parameter(torch.zeros(num_channels))
|
||||
self.eps = eps
|
||||
|
||||
def forward(self, x):
|
||||
"""Perform forward pass for 2D layer normalization."""
|
||||
u = x.mean(1, keepdim=True)
|
||||
s = (x - u).pow(2).mean(1, keepdim=True)
|
||||
x = (x - u) / torch.sqrt(s + self.eps)
|
||||
return self.weight[:, None, None] * x + self.bias[:, None, None]
|
||||
|
||||
|
||||
class MSDeformAttn(nn.Module):
|
||||
"""
|
||||
Multiscale Deformable Attention Module based on Deformable-DETR and PaddleDetection implementations.
|
||||
|
||||
https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/ops/modules/ms_deform_attn.py
|
||||
"""
|
||||
|
||||
def __init__(self, d_model=256, n_levels=4, n_heads=8, n_points=4):
|
||||
"""Initialize MSDeformAttn with the given parameters."""
|
||||
super().__init__()
|
||||
if d_model % n_heads != 0:
|
||||
raise ValueError(f"d_model must be divisible by n_heads, but got {d_model} and {n_heads}")
|
||||
_d_per_head = d_model // n_heads
|
||||
# Better to set _d_per_head to a power of 2 which is more efficient in a CUDA implementation
|
||||
assert _d_per_head * n_heads == d_model, "`d_model` must be divisible by `n_heads`"
|
||||
|
||||
self.im2col_step = 64
|
||||
|
||||
self.d_model = d_model
|
||||
self.n_levels = n_levels
|
||||
self.n_heads = n_heads
|
||||
self.n_points = n_points
|
||||
|
||||
self.sampling_offsets = nn.Linear(d_model, n_heads * n_levels * n_points * 2)
|
||||
self.attention_weights = nn.Linear(d_model, n_heads * n_levels * n_points)
|
||||
self.value_proj = nn.Linear(d_model, d_model)
|
||||
self.output_proj = nn.Linear(d_model, d_model)
|
||||
|
||||
self._reset_parameters()
|
||||
|
||||
def _reset_parameters(self):
|
||||
"""Reset module parameters."""
|
||||
constant_(self.sampling_offsets.weight.data, 0.0)
|
||||
thetas = torch.arange(self.n_heads, dtype=torch.float32) * (2.0 * math.pi / self.n_heads)
|
||||
grid_init = torch.stack([thetas.cos(), thetas.sin()], -1)
|
||||
grid_init = (
|
||||
(grid_init / grid_init.abs().max(-1, keepdim=True)[0])
|
||||
.view(self.n_heads, 1, 1, 2)
|
||||
.repeat(1, self.n_levels, self.n_points, 1)
|
||||
)
|
||||
for i in range(self.n_points):
|
||||
grid_init[:, :, i, :] *= i + 1
|
||||
with torch.no_grad():
|
||||
self.sampling_offsets.bias = nn.Parameter(grid_init.view(-1))
|
||||
constant_(self.attention_weights.weight.data, 0.0)
|
||||
constant_(self.attention_weights.bias.data, 0.0)
|
||||
xavier_uniform_(self.value_proj.weight.data)
|
||||
constant_(self.value_proj.bias.data, 0.0)
|
||||
xavier_uniform_(self.output_proj.weight.data)
|
||||
constant_(self.output_proj.bias.data, 0.0)
|
||||
|
||||
def forward(self, query, refer_bbox, value, value_shapes, value_mask=None):
|
||||
"""
|
||||
Perform forward pass for multiscale deformable attention.
|
||||
|
||||
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/transformers/deformable_transformer.py
|
||||
|
||||
Args:
|
||||
query (torch.Tensor): [bs, query_length, C]
|
||||
refer_bbox (torch.Tensor): [bs, query_length, n_levels, 2], range in [0, 1], top-left (0,0),
|
||||
bottom-right (1, 1), including padding area
|
||||
value (torch.Tensor): [bs, value_length, C]
|
||||
value_shapes (List): [n_levels, 2], [(H_0, W_0), (H_1, W_1), ..., (H_{L-1}, W_{L-1})]
|
||||
value_mask (Tensor): [bs, value_length], True for non-padding elements, False for padding elements
|
||||
|
||||
Returns:
|
||||
output (Tensor): [bs, Length_{query}, C]
|
||||
"""
|
||||
bs, len_q = query.shape[:2]
|
||||
len_v = value.shape[1]
|
||||
assert sum(s[0] * s[1] for s in value_shapes) == len_v
|
||||
|
||||
value = self.value_proj(value)
|
||||
if value_mask is not None:
|
||||
value = value.masked_fill(value_mask[..., None], float(0))
|
||||
value = value.view(bs, len_v, self.n_heads, self.d_model // self.n_heads)
|
||||
sampling_offsets = self.sampling_offsets(query).view(bs, len_q, self.n_heads, self.n_levels, self.n_points, 2)
|
||||
attention_weights = self.attention_weights(query).view(bs, len_q, self.n_heads, self.n_levels * self.n_points)
|
||||
attention_weights = F.softmax(attention_weights, -1).view(bs, len_q, self.n_heads, self.n_levels, self.n_points)
|
||||
# N, Len_q, n_heads, n_levels, n_points, 2
|
||||
num_points = refer_bbox.shape[-1]
|
||||
if num_points == 2:
|
||||
offset_normalizer = torch.as_tensor(value_shapes, dtype=query.dtype, device=query.device).flip(-1)
|
||||
add = sampling_offsets / offset_normalizer[None, None, None, :, None, :]
|
||||
sampling_locations = refer_bbox[:, :, None, :, None, :] + add
|
||||
elif num_points == 4:
|
||||
add = sampling_offsets / self.n_points * refer_bbox[:, :, None, :, None, 2:] * 0.5
|
||||
sampling_locations = refer_bbox[:, :, None, :, None, :2] + add
|
||||
else:
|
||||
raise ValueError(f"Last dim of reference_points must be 2 or 4, but got {num_points}.")
|
||||
output = multi_scale_deformable_attn_pytorch(value, value_shapes, sampling_locations, attention_weights)
|
||||
return self.output_proj(output)
|
||||
|
||||
|
||||
class DeformableTransformerDecoderLayer(nn.Module):
|
||||
"""
|
||||
Deformable Transformer Decoder Layer inspired by PaddleDetection and Deformable-DETR implementations.
|
||||
|
||||
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/transformers/deformable_transformer.py
|
||||
https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/deformable_transformer.py
|
||||
"""
|
||||
|
||||
def __init__(self, d_model=256, n_heads=8, d_ffn=1024, dropout=0.0, act=nn.ReLU(), n_levels=4, n_points=4):
|
||||
"""Initialize the DeformableTransformerDecoderLayer with the given parameters."""
|
||||
super().__init__()
|
||||
|
||||
# Self attention
|
||||
self.self_attn = nn.MultiheadAttention(d_model, n_heads, dropout=dropout)
|
||||
self.dropout1 = nn.Dropout(dropout)
|
||||
self.norm1 = nn.LayerNorm(d_model)
|
||||
|
||||
# Cross attention
|
||||
self.cross_attn = MSDeformAttn(d_model, n_levels, n_heads, n_points)
|
||||
self.dropout2 = nn.Dropout(dropout)
|
||||
self.norm2 = nn.LayerNorm(d_model)
|
||||
|
||||
# FFN
|
||||
self.linear1 = nn.Linear(d_model, d_ffn)
|
||||
self.act = act
|
||||
self.dropout3 = nn.Dropout(dropout)
|
||||
self.linear2 = nn.Linear(d_ffn, d_model)
|
||||
self.dropout4 = nn.Dropout(dropout)
|
||||
self.norm3 = nn.LayerNorm(d_model)
|
||||
|
||||
@staticmethod
|
||||
def with_pos_embed(tensor, pos):
|
||||
"""Add positional embeddings to the input tensor, if provided."""
|
||||
return tensor if pos is None else tensor + pos
|
||||
|
||||
def forward_ffn(self, tgt):
|
||||
"""Perform forward pass through the Feed-Forward Network part of the layer."""
|
||||
tgt2 = self.linear2(self.dropout3(self.act(self.linear1(tgt))))
|
||||
tgt = tgt + self.dropout4(tgt2)
|
||||
return self.norm3(tgt)
|
||||
|
||||
def forward(self, embed, refer_bbox, feats, shapes, padding_mask=None, attn_mask=None, query_pos=None):
|
||||
"""Perform the forward pass through the entire decoder layer."""
|
||||
|
||||
# Self attention
|
||||
q = k = self.with_pos_embed(embed, query_pos)
|
||||
tgt = self.self_attn(q.transpose(0, 1), k.transpose(0, 1), embed.transpose(0, 1), attn_mask=attn_mask)[
|
||||
0
|
||||
].transpose(0, 1)
|
||||
embed = embed + self.dropout1(tgt)
|
||||
embed = self.norm1(embed)
|
||||
|
||||
# Cross attention
|
||||
tgt = self.cross_attn(
|
||||
self.with_pos_embed(embed, query_pos), refer_bbox.unsqueeze(2), feats, shapes, padding_mask
|
||||
)
|
||||
embed = embed + self.dropout2(tgt)
|
||||
embed = self.norm2(embed)
|
||||
|
||||
# FFN
|
||||
return self.forward_ffn(embed)
|
||||
|
||||
|
||||
class DeformableTransformerDecoder(nn.Module):
|
||||
"""
|
||||
Implementation of Deformable Transformer Decoder based on PaddleDetection.
|
||||
|
||||
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/transformers/deformable_transformer.py
|
||||
"""
|
||||
|
||||
def __init__(self, hidden_dim, decoder_layer, num_layers, eval_idx=-1):
|
||||
"""Initialize the DeformableTransformerDecoder with the given parameters."""
|
||||
super().__init__()
|
||||
self.layers = _get_clones(decoder_layer, num_layers)
|
||||
self.num_layers = num_layers
|
||||
self.hidden_dim = hidden_dim
|
||||
self.eval_idx = eval_idx if eval_idx >= 0 else num_layers + eval_idx
|
||||
|
||||
def forward(
|
||||
self,
|
||||
embed, # decoder embeddings
|
||||
refer_bbox, # anchor
|
||||
feats, # image features
|
||||
shapes, # feature shapes
|
||||
bbox_head,
|
||||
score_head,
|
||||
pos_mlp,
|
||||
attn_mask=None,
|
||||
padding_mask=None,
|
||||
):
|
||||
"""Perform the forward pass through the entire decoder."""
|
||||
output = embed
|
||||
dec_bboxes = []
|
||||
dec_cls = []
|
||||
last_refined_bbox = None
|
||||
refer_bbox = refer_bbox.sigmoid()
|
||||
for i, layer in enumerate(self.layers):
|
||||
output = layer(output, refer_bbox, feats, shapes, padding_mask, attn_mask, pos_mlp(refer_bbox))
|
||||
|
||||
bbox = bbox_head[i](output)
|
||||
refined_bbox = torch.sigmoid(bbox + inverse_sigmoid(refer_bbox))
|
||||
|
||||
if self.training:
|
||||
dec_cls.append(score_head[i](output))
|
||||
if i == 0:
|
||||
dec_bboxes.append(refined_bbox)
|
||||
else:
|
||||
dec_bboxes.append(torch.sigmoid(bbox + inverse_sigmoid(last_refined_bbox)))
|
||||
elif i == self.eval_idx:
|
||||
dec_cls.append(score_head[i](output))
|
||||
dec_bboxes.append(refined_bbox)
|
||||
break
|
||||
|
||||
last_refined_bbox = refined_bbox
|
||||
refer_bbox = refined_bbox.detach() if self.training else refined_bbox
|
||||
|
||||
return torch.stack(dec_bboxes), torch.stack(dec_cls)
|
85
ultralytics/nn/modules/utils.py
Normal file
85
ultralytics/nn/modules/utils.py
Normal file
@ -0,0 +1,85 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
"""Module utils."""
|
||||
|
||||
import copy
|
||||
import math
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch.nn.init import uniform_
|
||||
|
||||
__all__ = "multi_scale_deformable_attn_pytorch", "inverse_sigmoid"
|
||||
|
||||
|
||||
def _get_clones(module, n):
|
||||
"""Create a list of cloned modules from the given module."""
|
||||
return nn.ModuleList([copy.deepcopy(module) for _ in range(n)])
|
||||
|
||||
|
||||
def bias_init_with_prob(prior_prob=0.01):
|
||||
"""Initialize conv/fc bias value according to a given probability value."""
|
||||
return float(-np.log((1 - prior_prob) / prior_prob)) # return bias_init
|
||||
|
||||
|
||||
def linear_init(module):
|
||||
"""Initialize the weights and biases of a linear module."""
|
||||
bound = 1 / math.sqrt(module.weight.shape[0])
|
||||
uniform_(module.weight, -bound, bound)
|
||||
if hasattr(module, "bias") and module.bias is not None:
|
||||
uniform_(module.bias, -bound, bound)
|
||||
|
||||
|
||||
def inverse_sigmoid(x, eps=1e-5):
|
||||
"""Calculate the inverse sigmoid function for a tensor."""
|
||||
x = x.clamp(min=0, max=1)
|
||||
x1 = x.clamp(min=eps)
|
||||
x2 = (1 - x).clamp(min=eps)
|
||||
return torch.log(x1 / x2)
|
||||
|
||||
|
||||
def multi_scale_deformable_attn_pytorch(
|
||||
value: torch.Tensor,
|
||||
value_spatial_shapes: torch.Tensor,
|
||||
sampling_locations: torch.Tensor,
|
||||
attention_weights: torch.Tensor,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Multiscale deformable attention.
|
||||
|
||||
https://github.com/IDEA-Research/detrex/blob/main/detrex/layers/multi_scale_deform_attn.py
|
||||
"""
|
||||
|
||||
bs, _, num_heads, embed_dims = value.shape
|
||||
_, num_queries, num_heads, num_levels, num_points, _ = sampling_locations.shape
|
||||
value_list = value.split([H_ * W_ for H_, W_ in value_spatial_shapes], dim=1)
|
||||
sampling_grids = 2 * sampling_locations - 1
|
||||
sampling_value_list = []
|
||||
for level, (H_, W_) in enumerate(value_spatial_shapes):
|
||||
# bs, H_*W_, num_heads, embed_dims ->
|
||||
# bs, H_*W_, num_heads*embed_dims ->
|
||||
# bs, num_heads*embed_dims, H_*W_ ->
|
||||
# bs*num_heads, embed_dims, H_, W_
|
||||
value_l_ = value_list[level].flatten(2).transpose(1, 2).reshape(bs * num_heads, embed_dims, H_, W_)
|
||||
# bs, num_queries, num_heads, num_points, 2 ->
|
||||
# bs, num_heads, num_queries, num_points, 2 ->
|
||||
# bs*num_heads, num_queries, num_points, 2
|
||||
sampling_grid_l_ = sampling_grids[:, :, :, level].transpose(1, 2).flatten(0, 1)
|
||||
# bs*num_heads, embed_dims, num_queries, num_points
|
||||
sampling_value_l_ = F.grid_sample(
|
||||
value_l_, sampling_grid_l_, mode="bilinear", padding_mode="zeros", align_corners=False
|
||||
)
|
||||
sampling_value_list.append(sampling_value_l_)
|
||||
# (bs, num_queries, num_heads, num_levels, num_points) ->
|
||||
# (bs, num_heads, num_queries, num_levels, num_points) ->
|
||||
# (bs, num_heads, 1, num_queries, num_levels*num_points)
|
||||
attention_weights = attention_weights.transpose(1, 2).reshape(
|
||||
bs * num_heads, 1, num_queries, num_levels * num_points
|
||||
)
|
||||
output = (
|
||||
(torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights)
|
||||
.sum(-1)
|
||||
.view(bs, num_heads * embed_dims, num_queries)
|
||||
)
|
||||
return output.transpose(1, 2).contiguous()
|
1062
ultralytics/nn/tasks.py
Normal file
1062
ultralytics/nn/tasks.py
Normal file
File diff suppressed because it is too large
Load Diff
Reference in New Issue
Block a user