mirror of
https://gitee.com/nanjing-yimao-information/ieemoo-ai-gift.git
synced 2025-08-20 06:10:26 +00:00
update
This commit is contained in:
5
ultralytics/models/yolov10/__init__.py
Normal file
5
ultralytics/models/yolov10/__init__.py
Normal file
@ -0,0 +1,5 @@
|
||||
from .model import YOLOv10
|
||||
from .predict import YOLOv10DetectionPredictor
|
||||
from .val import YOLOv10DetectionValidator
|
||||
|
||||
__all__ = "YOLOv10DetectionPredictor", "YOLOv10DetectionValidator", "YOLOv10"
|
64
ultralytics/models/yolov10/card.py
Normal file
64
ultralytics/models/yolov10/card.py
Normal file
@ -0,0 +1,64 @@
|
||||
card_template_text = """
|
||||
---
|
||||
license: agpl-3.0
|
||||
library_name: ultralytics
|
||||
repo_url: https://github.com/THU-MIG/yolov10
|
||||
tags:
|
||||
- object-detection
|
||||
- computer-vision
|
||||
- yolov10
|
||||
datasets:
|
||||
- detection-datasets/coco
|
||||
inference: false
|
||||
---
|
||||
|
||||
### Model Description
|
||||
[YOLOv10: Real-Time End-to-End Object Detection](https://arxiv.org/abs/2405.14458v1)
|
||||
|
||||
- arXiv: https://arxiv.org/abs/2405.14458v1
|
||||
- github: https://github.com/THU-MIG/yolov10
|
||||
|
||||
### Installation
|
||||
```
|
||||
pip install git+https://github.com/THU-MIG/yolov10.git
|
||||
```
|
||||
|
||||
### Training and validation
|
||||
```python
|
||||
from ultralytics import YOLOv10
|
||||
|
||||
model = YOLOv10.from_pretrained('jameslahm/yolov10n')
|
||||
# Training
|
||||
model.train(...)
|
||||
# after training, one can push to the hub
|
||||
model.push_to_hub("your-hf-username/yolov10-finetuned")
|
||||
|
||||
# Validation
|
||||
model.val(...)
|
||||
```
|
||||
|
||||
### Inference
|
||||
|
||||
Here's an end-to-end example showcasing inference on a cats image:
|
||||
|
||||
```python
|
||||
from ultralytics import YOLOv10
|
||||
|
||||
model = YOLOv10.from_pretrained('jameslahm/yolov10n')
|
||||
source = 'http://images.cocodataset.org/val2017/000000039769.jpg'
|
||||
model.predict(source=source, save=True)
|
||||
```
|
||||
which shows:
|
||||
|
||||

|
||||
|
||||
### BibTeX Entry and Citation Info
|
||||
```
|
||||
@article{wang2024yolov10,
|
||||
title={YOLOv10: Real-Time End-to-End Object Detection},
|
||||
author={Wang, Ao and Chen, Hui and Liu, Lihao and Chen, Kai and Lin, Zijia and Han, Jungong and Ding, Guiguang},
|
||||
journal={arXiv preprint arXiv:2405.14458},
|
||||
year={2024}
|
||||
}
|
||||
```
|
||||
""".strip()
|
36
ultralytics/models/yolov10/model.py
Normal file
36
ultralytics/models/yolov10/model.py
Normal file
@ -0,0 +1,36 @@
|
||||
from ultralytics.engine.model import Model
|
||||
from ultralytics.nn.tasks import YOLOv10DetectionModel
|
||||
from .val import YOLOv10DetectionValidator
|
||||
from .predict import YOLOv10DetectionPredictor
|
||||
from .train import YOLOv10DetectionTrainer
|
||||
|
||||
from huggingface_hub import PyTorchModelHubMixin
|
||||
from .card import card_template_text
|
||||
|
||||
class YOLOv10(Model, PyTorchModelHubMixin, model_card_template=card_template_text):
|
||||
|
||||
def __init__(self, model="yolov10n.pt", task=None, verbose=False,
|
||||
names=None):
|
||||
super().__init__(model=model, task=task, verbose=verbose)
|
||||
if names is not None:
|
||||
setattr(self.model, 'names', names)
|
||||
|
||||
def push_to_hub(self, repo_name, **kwargs):
|
||||
config = kwargs.get('config', {})
|
||||
config['names'] = self.names
|
||||
config['model'] = self.model.yaml['yaml_file']
|
||||
config['task'] = self.task
|
||||
kwargs['config'] = config
|
||||
super().push_to_hub(repo_name, **kwargs)
|
||||
|
||||
@property
|
||||
def task_map(self):
|
||||
"""Map head to model, trainer, validator, and predictor classes."""
|
||||
return {
|
||||
"detect": {
|
||||
"model": YOLOv10DetectionModel,
|
||||
"trainer": YOLOv10DetectionTrainer,
|
||||
"validator": YOLOv10DetectionValidator,
|
||||
"predictor": YOLOv10DetectionPredictor,
|
||||
},
|
||||
}
|
38
ultralytics/models/yolov10/predict.py
Normal file
38
ultralytics/models/yolov10/predict.py
Normal file
@ -0,0 +1,38 @@
|
||||
from ultralytics.models.yolo.detect import DetectionPredictor
|
||||
import torch
|
||||
from ultralytics.utils import ops
|
||||
from ultralytics.engine.results import Results
|
||||
|
||||
|
||||
class YOLOv10DetectionPredictor(DetectionPredictor):
|
||||
def postprocess(self, preds, img, orig_imgs):
|
||||
if isinstance(preds, dict):
|
||||
preds = preds["one2one"]
|
||||
|
||||
if isinstance(preds, (list, tuple)):
|
||||
preds = preds[0]
|
||||
|
||||
if preds.shape[-1] == 6:
|
||||
pass
|
||||
else:
|
||||
preds = preds.transpose(-1, -2)
|
||||
bboxes, scores, labels = ops.v10postprocess(preds, self.args.max_det, preds.shape[-1]-4)
|
||||
bboxes = ops.xywh2xyxy(bboxes)
|
||||
preds = torch.cat([bboxes, scores.unsqueeze(-1), labels.unsqueeze(-1)], dim=-1)
|
||||
|
||||
mask = preds[..., 4] > self.args.conf
|
||||
if self.args.classes is not None:
|
||||
mask = mask & (preds[..., 5:6] == torch.tensor(self.args.classes, device=preds.device).unsqueeze(0)).any(2)
|
||||
|
||||
preds = [p[mask[idx]] for idx, p in enumerate(preds)]
|
||||
|
||||
if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list
|
||||
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
|
||||
|
||||
results = []
|
||||
for i, pred in enumerate(preds):
|
||||
orig_img = orig_imgs[i]
|
||||
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
|
||||
img_path = self.batch[0][i]
|
||||
results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred))
|
||||
return results
|
20
ultralytics/models/yolov10/train.py
Normal file
20
ultralytics/models/yolov10/train.py
Normal file
@ -0,0 +1,20 @@
|
||||
from ultralytics.models.yolo.detect import DetectionTrainer
|
||||
from .val import YOLOv10DetectionValidator
|
||||
from .model import YOLOv10DetectionModel
|
||||
from copy import copy
|
||||
from ultralytics.utils import RANK
|
||||
|
||||
class YOLOv10DetectionTrainer(DetectionTrainer):
|
||||
def get_validator(self):
|
||||
"""Returns a DetectionValidator for YOLO model validation."""
|
||||
self.loss_names = "box_om", "cls_om", "dfl_om", "box_oo", "cls_oo", "dfl_oo",
|
||||
return YOLOv10DetectionValidator(
|
||||
self.test_loader, save_dir=self.save_dir, args=copy(self.args), _callbacks=self.callbacks
|
||||
)
|
||||
|
||||
def get_model(self, cfg=None, weights=None, verbose=True):
|
||||
"""Return a YOLO detection model."""
|
||||
model = YOLOv10DetectionModel(cfg, nc=self.data["nc"], verbose=verbose and RANK == -1)
|
||||
if weights:
|
||||
model.load(weights)
|
||||
return model
|
24
ultralytics/models/yolov10/val.py
Normal file
24
ultralytics/models/yolov10/val.py
Normal file
@ -0,0 +1,24 @@
|
||||
from ultralytics.models.yolo.detect import DetectionValidator
|
||||
from ultralytics.utils import ops
|
||||
import torch
|
||||
|
||||
class YOLOv10DetectionValidator(DetectionValidator):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.args.save_json |= self.is_coco
|
||||
|
||||
def postprocess(self, preds):
|
||||
if isinstance(preds, dict):
|
||||
preds = preds["one2one"]
|
||||
|
||||
if isinstance(preds, (list, tuple)):
|
||||
preds = preds[0]
|
||||
|
||||
# Acknowledgement: Thanks to sanha9999 in #190 and #181!
|
||||
if preds.shape[-1] == 6:
|
||||
return preds
|
||||
else:
|
||||
preds = preds.transpose(-1, -2)
|
||||
boxes, scores, labels = ops.v10postprocess(preds, self.args.max_det, self.nc)
|
||||
bboxes = ops.xywh2xyxy(boxes)
|
||||
return torch.cat([bboxes, scores.unsqueeze(-1), labels.unsqueeze(-1)], dim=-1)
|
Reference in New Issue
Block a user