This commit is contained in:
lee
2025-06-18 14:35:43 +08:00
commit e474ab5f9f
529 changed files with 80523 additions and 0 deletions

View File

@ -0,0 +1 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license

View File

@ -0,0 +1,190 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
from typing import List, Tuple, Type
import torch
from torch import nn
from torch.nn import functional as F
from ultralytics.nn.modules import LayerNorm2d
class MaskDecoder(nn.Module):
"""
Decoder module for generating masks and their associated quality scores, using a transformer architecture to predict
masks given image and prompt embeddings.
Attributes:
transformer_dim (int): Channel dimension for the transformer module.
transformer (nn.Module): The transformer module used for mask prediction.
num_multimask_outputs (int): Number of masks to predict for disambiguating masks.
iou_token (nn.Embedding): Embedding for the IoU token.
num_mask_tokens (int): Number of mask tokens.
mask_tokens (nn.Embedding): Embedding for the mask tokens.
output_upscaling (nn.Sequential): Neural network sequence for upscaling the output.
output_hypernetworks_mlps (nn.ModuleList): Hypernetwork MLPs for generating masks.
iou_prediction_head (nn.Module): MLP for predicting mask quality.
"""
def __init__(
self,
*,
transformer_dim: int,
transformer: nn.Module,
num_multimask_outputs: int = 3,
activation: Type[nn.Module] = nn.GELU,
iou_head_depth: int = 3,
iou_head_hidden_dim: int = 256,
) -> None:
"""
Predicts masks given an image and prompt embeddings, using a transformer architecture.
Args:
transformer_dim (int): the channel dimension of the transformer module
transformer (nn.Module): the transformer used to predict masks
num_multimask_outputs (int): the number of masks to predict when disambiguating masks
activation (nn.Module): the type of activation to use when upscaling masks
iou_head_depth (int): the depth of the MLP used to predict mask quality
iou_head_hidden_dim (int): the hidden dimension of the MLP used to predict mask quality
"""
super().__init__()
self.transformer_dim = transformer_dim
self.transformer = transformer
self.num_multimask_outputs = num_multimask_outputs
self.iou_token = nn.Embedding(1, transformer_dim)
self.num_mask_tokens = num_multimask_outputs + 1
self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)
self.output_upscaling = nn.Sequential(
nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
LayerNorm2d(transformer_dim // 4),
activation(),
nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
activation(),
)
self.output_hypernetworks_mlps = nn.ModuleList(
[MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) for _ in range(self.num_mask_tokens)]
)
self.iou_prediction_head = MLP(transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth)
def forward(
self,
image_embeddings: torch.Tensor,
image_pe: torch.Tensor,
sparse_prompt_embeddings: torch.Tensor,
dense_prompt_embeddings: torch.Tensor,
multimask_output: bool,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Predict masks given image and prompt embeddings.
Args:
image_embeddings (torch.Tensor): the embeddings from the image encoder
image_pe (torch.Tensor): positional encoding with the shape of image_embeddings
sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes
dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs
multimask_output (bool): Whether to return multiple masks or a single mask.
Returns:
torch.Tensor: batched predicted masks
torch.Tensor: batched predictions of mask quality
"""
masks, iou_pred = self.predict_masks(
image_embeddings=image_embeddings,
image_pe=image_pe,
sparse_prompt_embeddings=sparse_prompt_embeddings,
dense_prompt_embeddings=dense_prompt_embeddings,
)
# Select the correct mask or masks for output
mask_slice = slice(1, None) if multimask_output else slice(0, 1)
masks = masks[:, mask_slice, :, :]
iou_pred = iou_pred[:, mask_slice]
# Prepare output
return masks, iou_pred
def predict_masks(
self,
image_embeddings: torch.Tensor,
image_pe: torch.Tensor,
sparse_prompt_embeddings: torch.Tensor,
dense_prompt_embeddings: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Predicts masks.
See 'forward' for more details.
"""
# Concatenate output tokens
output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0)
output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.shape[0], -1, -1)
tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
# Expand per-image data in batch direction to be per-mask
src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
src = src + dense_prompt_embeddings
pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
b, c, h, w = src.shape
# Run the transformer
hs, src = self.transformer(src, pos_src, tokens)
iou_token_out = hs[:, 0, :]
mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :]
# Upscale mask embeddings and predict masks using the mask tokens
src = src.transpose(1, 2).view(b, c, h, w)
upscaled_embedding = self.output_upscaling(src)
hyper_in_list: List[torch.Tensor] = [
self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]) for i in range(self.num_mask_tokens)
]
hyper_in = torch.stack(hyper_in_list, dim=1)
b, c, h, w = upscaled_embedding.shape
masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)
# Generate mask quality predictions
iou_pred = self.iou_prediction_head(iou_token_out)
return masks, iou_pred
class MLP(nn.Module):
"""
MLP (Multi-Layer Perceptron) model lightly adapted from
https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py
"""
def __init__(
self,
input_dim: int,
hidden_dim: int,
output_dim: int,
num_layers: int,
sigmoid_output: bool = False,
) -> None:
"""
Initializes the MLP (Multi-Layer Perceptron) model.
Args:
input_dim (int): The dimensionality of the input features.
hidden_dim (int): The dimensionality of the hidden layers.
output_dim (int): The dimensionality of the output layer.
num_layers (int): The number of hidden layers.
sigmoid_output (bool, optional): Apply a sigmoid activation to the output layer. Defaults to False.
"""
super().__init__()
self.num_layers = num_layers
h = [hidden_dim] * (num_layers - 1)
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
self.sigmoid_output = sigmoid_output
def forward(self, x):
"""Executes feedforward within the neural network module and applies activation."""
for i, layer in enumerate(self.layers):
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
if self.sigmoid_output:
x = torch.sigmoid(x)
return x

View File

@ -0,0 +1,603 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
from typing import Any, Optional, Tuple, Type
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from ultralytics.nn.modules import LayerNorm2d, MLPBlock
class ImageEncoderViT(nn.Module):
"""
An image encoder using Vision Transformer (ViT) architecture for encoding an image into a compact latent space. The
encoder takes an image, splits it into patches, and processes these patches through a series of transformer blocks.
The encoded patches are then processed through a neck to generate the final encoded representation.
This class and its supporting functions below lightly adapted from the ViTDet backbone available at
https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/vit.py.
Attributes:
img_size (int): Dimension of input images, assumed to be square.
patch_embed (PatchEmbed): Module for patch embedding.
pos_embed (nn.Parameter, optional): Absolute positional embedding for patches.
blocks (nn.ModuleList): List of transformer blocks for processing patch embeddings.
neck (nn.Sequential): Neck module to further process the output.
"""
def __init__(
self,
img_size: int = 1024,
patch_size: int = 16,
in_chans: int = 3,
embed_dim: int = 768,
depth: int = 12,
num_heads: int = 12,
mlp_ratio: float = 4.0,
out_chans: int = 256,
qkv_bias: bool = True,
norm_layer: Type[nn.Module] = nn.LayerNorm,
act_layer: Type[nn.Module] = nn.GELU,
use_abs_pos: bool = True,
use_rel_pos: bool = False,
rel_pos_zero_init: bool = True,
window_size: int = 0,
global_attn_indexes: Tuple[int, ...] = (),
) -> None:
"""
Args:
img_size (int): Input image size.
patch_size (int): Patch size.
in_chans (int): Number of input image channels.
embed_dim (int): Patch embedding dimension.
depth (int): Depth of ViT.
num_heads (int): Number of attention heads in each ViT block.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool): If True, add a learnable bias to query, key, value.
norm_layer (nn.Module): Normalization layer.
act_layer (nn.Module): Activation layer.
use_abs_pos (bool): If True, use absolute positional embeddings.
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
window_size (int): Window size for window attention blocks.
global_attn_indexes (list): Indexes for blocks using global attention.
"""
super().__init__()
self.img_size = img_size
self.patch_embed = PatchEmbed(
kernel_size=(patch_size, patch_size),
stride=(patch_size, patch_size),
in_chans=in_chans,
embed_dim=embed_dim,
)
self.pos_embed: Optional[nn.Parameter] = None
if use_abs_pos:
# Initialize absolute positional embedding with pretrain image size.
self.pos_embed = nn.Parameter(torch.zeros(1, img_size // patch_size, img_size // patch_size, embed_dim))
self.blocks = nn.ModuleList()
for i in range(depth):
block = Block(
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
norm_layer=norm_layer,
act_layer=act_layer,
use_rel_pos=use_rel_pos,
rel_pos_zero_init=rel_pos_zero_init,
window_size=window_size if i not in global_attn_indexes else 0,
input_size=(img_size // patch_size, img_size // patch_size),
)
self.blocks.append(block)
self.neck = nn.Sequential(
nn.Conv2d(
embed_dim,
out_chans,
kernel_size=1,
bias=False,
),
LayerNorm2d(out_chans),
nn.Conv2d(
out_chans,
out_chans,
kernel_size=3,
padding=1,
bias=False,
),
LayerNorm2d(out_chans),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Processes input through patch embedding, applies positional embedding if present, and passes through blocks
and neck.
"""
x = self.patch_embed(x)
if self.pos_embed is not None:
x = x + self.pos_embed
for blk in self.blocks:
x = blk(x)
return self.neck(x.permute(0, 3, 1, 2))
class PromptEncoder(nn.Module):
"""
Encodes different types of prompts, including points, boxes, and masks, for input to SAM's mask decoder. The encoder
produces both sparse and dense embeddings for the input prompts.
Attributes:
embed_dim (int): Dimension of the embeddings.
input_image_size (Tuple[int, int]): Size of the input image as (H, W).
image_embedding_size (Tuple[int, int]): Spatial size of the image embedding as (H, W).
pe_layer (PositionEmbeddingRandom): Module for random position embedding.
num_point_embeddings (int): Number of point embeddings for different types of points.
point_embeddings (nn.ModuleList): List of point embeddings.
not_a_point_embed (nn.Embedding): Embedding for points that are not a part of any label.
mask_input_size (Tuple[int, int]): Size of the input mask.
mask_downscaling (nn.Sequential): Neural network for downscaling the mask.
no_mask_embed (nn.Embedding): Embedding for cases where no mask is provided.
"""
def __init__(
self,
embed_dim: int,
image_embedding_size: Tuple[int, int],
input_image_size: Tuple[int, int],
mask_in_chans: int,
activation: Type[nn.Module] = nn.GELU,
) -> None:
"""
Encodes prompts for input to SAM's mask decoder.
Args:
embed_dim (int): The prompts' embedding dimension
image_embedding_size (tuple(int, int)): The spatial size of the
image embedding, as (H, W).
input_image_size (int): The padded size of the image as input
to the image encoder, as (H, W).
mask_in_chans (int): The number of hidden channels used for
encoding input masks.
activation (nn.Module): The activation to use when encoding
input masks.
"""
super().__init__()
self.embed_dim = embed_dim
self.input_image_size = input_image_size
self.image_embedding_size = image_embedding_size
self.pe_layer = PositionEmbeddingRandom(embed_dim // 2)
self.num_point_embeddings: int = 4 # pos/neg point + 2 box corners
point_embeddings = [nn.Embedding(1, embed_dim) for _ in range(self.num_point_embeddings)]
self.point_embeddings = nn.ModuleList(point_embeddings)
self.not_a_point_embed = nn.Embedding(1, embed_dim)
self.mask_input_size = (4 * image_embedding_size[0], 4 * image_embedding_size[1])
self.mask_downscaling = nn.Sequential(
nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2),
LayerNorm2d(mask_in_chans // 4),
activation(),
nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2),
LayerNorm2d(mask_in_chans),
activation(),
nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1),
)
self.no_mask_embed = nn.Embedding(1, embed_dim)
def get_dense_pe(self) -> torch.Tensor:
"""
Returns the positional encoding used to encode point prompts, applied to a dense set of points the shape of the
image encoding.
Returns:
torch.Tensor: Positional encoding with shape 1x(embed_dim)x(embedding_h)x(embedding_w)
"""
return self.pe_layer(self.image_embedding_size).unsqueeze(0)
def _embed_points(self, points: torch.Tensor, labels: torch.Tensor, pad: bool) -> torch.Tensor:
"""Embeds point prompts."""
points = points + 0.5 # Shift to center of pixel
if pad:
padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device)
padding_label = -torch.ones((labels.shape[0], 1), device=labels.device)
points = torch.cat([points, padding_point], dim=1)
labels = torch.cat([labels, padding_label], dim=1)
point_embedding = self.pe_layer.forward_with_coords(points, self.input_image_size)
point_embedding[labels == -1] = 0.0
point_embedding[labels == -1] += self.not_a_point_embed.weight
point_embedding[labels == 0] += self.point_embeddings[0].weight
point_embedding[labels == 1] += self.point_embeddings[1].weight
return point_embedding
def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor:
"""Embeds box prompts."""
boxes = boxes + 0.5 # Shift to center of pixel
coords = boxes.reshape(-1, 2, 2)
corner_embedding = self.pe_layer.forward_with_coords(coords, self.input_image_size)
corner_embedding[:, 0, :] += self.point_embeddings[2].weight
corner_embedding[:, 1, :] += self.point_embeddings[3].weight
return corner_embedding
def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor:
"""Embeds mask inputs."""
return self.mask_downscaling(masks)
def _get_batch_size(
self,
points: Optional[Tuple[torch.Tensor, torch.Tensor]],
boxes: Optional[torch.Tensor],
masks: Optional[torch.Tensor],
) -> int:
"""Gets the batch size of the output given the batch size of the input prompts."""
if points is not None:
return points[0].shape[0]
elif boxes is not None:
return boxes.shape[0]
elif masks is not None:
return masks.shape[0]
else:
return 1
def _get_device(self) -> torch.device:
"""Returns the device of the first point embedding's weight tensor."""
return self.point_embeddings[0].weight.device
def forward(
self,
points: Optional[Tuple[torch.Tensor, torch.Tensor]],
boxes: Optional[torch.Tensor],
masks: Optional[torch.Tensor],
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Embeds different types of prompts, returning both sparse and dense embeddings.
Args:
points (tuple(torch.Tensor, torch.Tensor), None): point coordinates and labels to embed.
boxes (torch.Tensor, None): boxes to embed
masks (torch.Tensor, None): masks to embed
Returns:
torch.Tensor: sparse embeddings for the points and boxes, with shape BxNx(embed_dim), where N is determined
by the number of input points and boxes.
torch.Tensor: dense embeddings for the masks, in the shape Bx(embed_dim)x(embed_H)x(embed_W)
"""
bs = self._get_batch_size(points, boxes, masks)
sparse_embeddings = torch.empty((bs, 0, self.embed_dim), device=self._get_device())
if points is not None:
coords, labels = points
point_embeddings = self._embed_points(coords, labels, pad=(boxes is None))
sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1)
if boxes is not None:
box_embeddings = self._embed_boxes(boxes)
sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1)
if masks is not None:
dense_embeddings = self._embed_masks(masks)
else:
dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand(
bs, -1, self.image_embedding_size[0], self.image_embedding_size[1]
)
return sparse_embeddings, dense_embeddings
class PositionEmbeddingRandom(nn.Module):
"""Positional encoding using random spatial frequencies."""
def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None:
"""Initializes a position embedding using random spatial frequencies."""
super().__init__()
if scale is None or scale <= 0.0:
scale = 1.0
self.register_buffer("positional_encoding_gaussian_matrix", scale * torch.randn((2, num_pos_feats)))
# Set non-deterministic for forward() error 'cumsum_cuda_kernel does not have a deterministic implementation'
torch.use_deterministic_algorithms(False)
torch.backends.cudnn.deterministic = False
def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor:
"""Positionally encode points that are normalized to [0,1]."""
# Assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
coords = 2 * coords - 1
coords = coords @ self.positional_encoding_gaussian_matrix
coords = 2 * np.pi * coords
# Outputs d_1 x ... x d_n x C shape
return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1)
def forward(self, size: Tuple[int, int]) -> torch.Tensor:
"""Generate positional encoding for a grid of the specified size."""
h, w = size
device: Any = self.positional_encoding_gaussian_matrix.device
grid = torch.ones((h, w), device=device, dtype=torch.float32)
y_embed = grid.cumsum(dim=0) - 0.5
x_embed = grid.cumsum(dim=1) - 0.5
y_embed = y_embed / h
x_embed = x_embed / w
pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1))
return pe.permute(2, 0, 1) # C x H x W
def forward_with_coords(self, coords_input: torch.Tensor, image_size: Tuple[int, int]) -> torch.Tensor:
"""Positionally encode points that are not normalized to [0,1]."""
coords = coords_input.clone()
coords[:, :, 0] = coords[:, :, 0] / image_size[1]
coords[:, :, 1] = coords[:, :, 1] / image_size[0]
return self._pe_encoding(coords.to(torch.float)) # B x N x C
class Block(nn.Module):
"""Transformer blocks with support of window attention and residual propagation blocks."""
def __init__(
self,
dim: int,
num_heads: int,
mlp_ratio: float = 4.0,
qkv_bias: bool = True,
norm_layer: Type[nn.Module] = nn.LayerNorm,
act_layer: Type[nn.Module] = nn.GELU,
use_rel_pos: bool = False,
rel_pos_zero_init: bool = True,
window_size: int = 0,
input_size: Optional[Tuple[int, int]] = None,
) -> None:
"""
Args:
dim (int): Number of input channels.
num_heads (int): Number of attention heads in each ViT block.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool): If True, add a learnable bias to query, key, value.
norm_layer (nn.Module): Normalization layer.
act_layer (nn.Module): Activation layer.
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
window_size (int): Window size for window attention blocks. If it equals 0, then
use global attention.
input_size (tuple(int, int), None): Input resolution for calculating the relative
positional parameter size.
"""
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
use_rel_pos=use_rel_pos,
rel_pos_zero_init=rel_pos_zero_init,
input_size=input_size if window_size == 0 else (window_size, window_size),
)
self.norm2 = norm_layer(dim)
self.mlp = MLPBlock(embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer)
self.window_size = window_size
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Executes a forward pass through the transformer block with window attention and non-overlapping windows."""
shortcut = x
x = self.norm1(x)
# Window partition
if self.window_size > 0:
H, W = x.shape[1], x.shape[2]
x, pad_hw = window_partition(x, self.window_size)
x = self.attn(x)
# Reverse window partition
if self.window_size > 0:
x = window_unpartition(x, self.window_size, pad_hw, (H, W))
x = shortcut + x
return x + self.mlp(self.norm2(x))
class Attention(nn.Module):
"""Multi-head Attention block with relative position embeddings."""
def __init__(
self,
dim: int,
num_heads: int = 8,
qkv_bias: bool = True,
use_rel_pos: bool = False,
rel_pos_zero_init: bool = True,
input_size: Optional[Tuple[int, int]] = None,
) -> None:
"""
Initialize Attention module.
Args:
dim (int): Number of input channels.
num_heads (int): Number of attention heads.
qkv_bias (bool): If True, add a learnable bias to query, key, value.
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
input_size (tuple(int, int), None): Input resolution for calculating the relative
positional parameter size.
"""
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim**-0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.proj = nn.Linear(dim, dim)
self.use_rel_pos = use_rel_pos
if self.use_rel_pos:
assert input_size is not None, "Input size must be provided if using relative positional encoding."
# Initialize relative positional embeddings
self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Applies the forward operation including attention, normalization, MLP, and indexing within window limits."""
B, H, W, _ = x.shape
# qkv with shape (3, B, nHead, H * W, C)
qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
# q, k, v with shape (B * nHead, H * W, C)
q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0)
attn = (q * self.scale) @ k.transpose(-2, -1)
if self.use_rel_pos:
attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W))
attn = attn.softmax(dim=-1)
x = (attn @ v).view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1)
return self.proj(x)
def window_partition(x: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]:
"""
Partition into non-overlapping windows with padding if needed.
Args:
x (tensor): input tokens with [B, H, W, C].
window_size (int): window size.
Returns:
windows: windows after partition with [B * num_windows, window_size, window_size, C].
(Hp, Wp): padded height and width before partition
"""
B, H, W, C = x.shape
pad_h = (window_size - H % window_size) % window_size
pad_w = (window_size - W % window_size) % window_size
if pad_h > 0 or pad_w > 0:
x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
Hp, Wp = H + pad_h, W + pad_w
x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
return windows, (Hp, Wp)
def window_unpartition(
windows: torch.Tensor, window_size: int, pad_hw: Tuple[int, int], hw: Tuple[int, int]
) -> torch.Tensor:
"""
Window unpartition into original sequences and removing padding.
Args:
windows (tensor): input tokens with [B * num_windows, window_size, window_size, C].
window_size (int): window size.
pad_hw (Tuple): padded height and width (Hp, Wp).
hw (Tuple): original height and width (H, W) before padding.
Returns:
x: unpartitioned sequences with [B, H, W, C].
"""
Hp, Wp = pad_hw
H, W = hw
B = windows.shape[0] // (Hp * Wp // window_size // window_size)
x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)
if Hp > H or Wp > W:
x = x[:, :H, :W, :].contiguous()
return x
def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor:
"""
Get relative positional embeddings according to the relative positions of query and key sizes.
Args:
q_size (int): size of query q.
k_size (int): size of key k.
rel_pos (Tensor): relative position embeddings (L, C).
Returns:
Extracted positional embeddings according to relative positions.
"""
max_rel_dist = int(2 * max(q_size, k_size) - 1)
# Interpolate rel pos if needed.
if rel_pos.shape[0] != max_rel_dist:
# Interpolate rel pos.
rel_pos_resized = F.interpolate(
rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
size=max_rel_dist,
mode="linear",
)
rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
else:
rel_pos_resized = rel_pos
# Scale the coords with short length if shapes for q and k are different.
q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0)
k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0)
relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
return rel_pos_resized[relative_coords.long()]
def add_decomposed_rel_pos(
attn: torch.Tensor,
q: torch.Tensor,
rel_pos_h: torch.Tensor,
rel_pos_w: torch.Tensor,
q_size: Tuple[int, int],
k_size: Tuple[int, int],
) -> torch.Tensor:
"""
Calculate decomposed Relative Positional Embeddings from mvitv2 paper at
https://github.com/facebookresearch/mvit/blob/main/mvit/models/attention.py.
Args:
attn (Tensor): attention map.
q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C).
rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis.
rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis.
q_size (Tuple): spatial sequence size of query q with (q_h, q_w).
k_size (Tuple): spatial sequence size of key k with (k_h, k_w).
Returns:
attn (Tensor): attention map with added relative positional embeddings.
"""
q_h, q_w = q_size
k_h, k_w = k_size
Rh = get_rel_pos(q_h, k_h, rel_pos_h)
Rw = get_rel_pos(q_w, k_w, rel_pos_w)
B, _, dim = q.shape
r_q = q.reshape(B, q_h, q_w, dim)
rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh)
rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw)
attn = (attn.view(B, q_h, q_w, k_h, k_w) + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :]).view(
B, q_h * q_w, k_h * k_w
)
return attn
class PatchEmbed(nn.Module):
"""Image to Patch Embedding."""
def __init__(
self,
kernel_size: Tuple[int, int] = (16, 16),
stride: Tuple[int, int] = (16, 16),
padding: Tuple[int, int] = (0, 0),
in_chans: int = 3,
embed_dim: int = 768,
) -> None:
"""
Initialize PatchEmbed module.
Args:
kernel_size (Tuple): kernel size of the projection layer.
stride (Tuple): stride of the projection layer.
padding (Tuple): padding size of the projection layer.
in_chans (int): Number of input image channels.
embed_dim (int): Patch embedding dimension.
"""
super().__init__()
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Computes patch embedding by applying convolution and transposing resulting tensor."""
return self.proj(x).permute(0, 2, 3, 1) # B C H W -> B H W C

View File

@ -0,0 +1,65 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from typing import List
import torch
from torch import nn
from .decoders import MaskDecoder
from .encoders import ImageEncoderViT, PromptEncoder
class Sam(nn.Module):
"""
Sam (Segment Anything Model) is designed for object segmentation tasks. It uses image encoders to generate image
embeddings, and prompt encoders to encode various types of input prompts. These embeddings are then used by the mask
decoder to predict object masks.
Attributes:
mask_threshold (float): Threshold value for mask prediction.
image_format (str): Format of the input image, default is 'RGB'.
image_encoder (ImageEncoderViT): The backbone used to encode the image into embeddings.
prompt_encoder (PromptEncoder): Encodes various types of input prompts.
mask_decoder (MaskDecoder): Predicts object masks from the image and prompt embeddings.
pixel_mean (List[float]): Mean pixel values for image normalization.
pixel_std (List[float]): Standard deviation values for image normalization.
"""
mask_threshold: float = 0.0
image_format: str = "RGB"
def __init__(
self,
image_encoder: ImageEncoderViT,
prompt_encoder: PromptEncoder,
mask_decoder: MaskDecoder,
pixel_mean: List[float] = (123.675, 116.28, 103.53),
pixel_std: List[float] = (58.395, 57.12, 57.375),
) -> None:
"""
Initialize the Sam class to predict object masks from an image and input prompts.
Note:
All forward() operations moved to SAMPredictor.
Args:
image_encoder (ImageEncoderViT): The backbone used to encode the image into image embeddings.
prompt_encoder (PromptEncoder): Encodes various types of input prompts.
mask_decoder (MaskDecoder): Predicts masks from the image embeddings and encoded prompts.
pixel_mean (List[float], optional): Mean values for normalizing pixels in the input image. Defaults to
(123.675, 116.28, 103.53).
pixel_std (List[float], optional): Std values for normalizing pixels in the input image. Defaults to
(58.395, 57.12, 57.375).
"""
super().__init__()
self.image_encoder = image_encoder
self.prompt_encoder = prompt_encoder
self.mask_decoder = mask_decoder
self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False)
self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False)

View File

@ -0,0 +1,742 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# --------------------------------------------------------
# TinyViT Model Architecture
# Copyright (c) 2022 Microsoft
# Adapted from LeViT and Swin Transformer
# LeViT: (https://github.com/facebookresearch/levit)
# Swin: (https://github.com/microsoft/swin-transformer)
# Build the TinyViT Model
# --------------------------------------------------------
import itertools
from typing import Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from ultralytics.utils.instance import to_2tuple
class Conv2d_BN(torch.nn.Sequential):
"""A sequential container that performs 2D convolution followed by batch normalization."""
def __init__(self, a, b, ks=1, stride=1, pad=0, dilation=1, groups=1, bn_weight_init=1):
"""Initializes the MBConv model with given input channels, output channels, expansion ratio, activation, and
drop path.
"""
super().__init__()
self.add_module("c", torch.nn.Conv2d(a, b, ks, stride, pad, dilation, groups, bias=False))
bn = torch.nn.BatchNorm2d(b)
torch.nn.init.constant_(bn.weight, bn_weight_init)
torch.nn.init.constant_(bn.bias, 0)
self.add_module("bn", bn)
class PatchEmbed(nn.Module):
"""Embeds images into patches and projects them into a specified embedding dimension."""
def __init__(self, in_chans, embed_dim, resolution, activation):
"""Initialize the PatchMerging class with specified input, output dimensions, resolution and activation
function.
"""
super().__init__()
img_size: Tuple[int, int] = to_2tuple(resolution)
self.patches_resolution = (img_size[0] // 4, img_size[1] // 4)
self.num_patches = self.patches_resolution[0] * self.patches_resolution[1]
self.in_chans = in_chans
self.embed_dim = embed_dim
n = embed_dim
self.seq = nn.Sequential(
Conv2d_BN(in_chans, n // 2, 3, 2, 1),
activation(),
Conv2d_BN(n // 2, n, 3, 2, 1),
)
def forward(self, x):
"""Runs input tensor 'x' through the PatchMerging model's sequence of operations."""
return self.seq(x)
class MBConv(nn.Module):
"""Mobile Inverted Bottleneck Conv (MBConv) layer, part of the EfficientNet architecture."""
def __init__(self, in_chans, out_chans, expand_ratio, activation, drop_path):
"""Initializes a convolutional layer with specified dimensions, input resolution, depth, and activation
function.
"""
super().__init__()
self.in_chans = in_chans
self.hidden_chans = int(in_chans * expand_ratio)
self.out_chans = out_chans
self.conv1 = Conv2d_BN(in_chans, self.hidden_chans, ks=1)
self.act1 = activation()
self.conv2 = Conv2d_BN(self.hidden_chans, self.hidden_chans, ks=3, stride=1, pad=1, groups=self.hidden_chans)
self.act2 = activation()
self.conv3 = Conv2d_BN(self.hidden_chans, out_chans, ks=1, bn_weight_init=0.0)
self.act3 = activation()
# NOTE: `DropPath` is needed only for training.
# self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.drop_path = nn.Identity()
def forward(self, x):
"""Implements the forward pass for the model architecture."""
shortcut = x
x = self.conv1(x)
x = self.act1(x)
x = self.conv2(x)
x = self.act2(x)
x = self.conv3(x)
x = self.drop_path(x)
x += shortcut
return self.act3(x)
class PatchMerging(nn.Module):
"""Merges neighboring patches in the feature map and projects to a new dimension."""
def __init__(self, input_resolution, dim, out_dim, activation):
"""Initializes the ConvLayer with specific dimension, input resolution, depth, activation, drop path, and other
optional parameters.
"""
super().__init__()
self.input_resolution = input_resolution
self.dim = dim
self.out_dim = out_dim
self.act = activation()
self.conv1 = Conv2d_BN(dim, out_dim, 1, 1, 0)
stride_c = 1 if out_dim in [320, 448, 576] else 2
self.conv2 = Conv2d_BN(out_dim, out_dim, 3, stride_c, 1, groups=out_dim)
self.conv3 = Conv2d_BN(out_dim, out_dim, 1, 1, 0)
def forward(self, x):
"""Applies forward pass on the input utilizing convolution and activation layers, and returns the result."""
if x.ndim == 3:
H, W = self.input_resolution
B = len(x)
# (B, C, H, W)
x = x.view(B, H, W, -1).permute(0, 3, 1, 2)
x = self.conv1(x)
x = self.act(x)
x = self.conv2(x)
x = self.act(x)
x = self.conv3(x)
return x.flatten(2).transpose(1, 2)
class ConvLayer(nn.Module):
"""
Convolutional Layer featuring multiple MobileNetV3-style inverted bottleneck convolutions (MBConv).
Optionally applies downsample operations to the output, and provides support for gradient checkpointing.
"""
def __init__(
self,
dim,
input_resolution,
depth,
activation,
drop_path=0.0,
downsample=None,
use_checkpoint=False,
out_dim=None,
conv_expand_ratio=4.0,
):
"""
Initializes the ConvLayer with the given dimensions and settings.
Args:
dim (int): The dimensionality of the input and output.
input_resolution (Tuple[int, int]): The resolution of the input image.
depth (int): The number of MBConv layers in the block.
activation (Callable): Activation function applied after each convolution.
drop_path (Union[float, List[float]]): Drop path rate. Single float or a list of floats for each MBConv.
downsample (Optional[Callable]): Function for downsampling the output. None to skip downsampling.
use_checkpoint (bool): Whether to use gradient checkpointing to save memory.
out_dim (Optional[int]): The dimensionality of the output. None means it will be the same as `dim`.
conv_expand_ratio (float): Expansion ratio for the MBConv layers.
"""
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.depth = depth
self.use_checkpoint = use_checkpoint
# Build blocks
self.blocks = nn.ModuleList(
[
MBConv(
dim,
dim,
conv_expand_ratio,
activation,
drop_path[i] if isinstance(drop_path, list) else drop_path,
)
for i in range(depth)
]
)
# Patch merging layer
self.downsample = (
None
if downsample is None
else downsample(input_resolution, dim=dim, out_dim=out_dim, activation=activation)
)
def forward(self, x):
"""Processes the input through a series of convolutional layers and returns the activated output."""
for blk in self.blocks:
x = checkpoint.checkpoint(blk, x) if self.use_checkpoint else blk(x)
return x if self.downsample is None else self.downsample(x)
class Mlp(nn.Module):
"""
Multi-layer Perceptron (MLP) for transformer architectures.
This layer takes an input with in_features, applies layer normalization and two fully-connected layers.
"""
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0):
"""Initializes Attention module with the given parameters including dimension, key_dim, number of heads, etc."""
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.norm = nn.LayerNorm(in_features)
self.fc1 = nn.Linear(in_features, hidden_features)
self.fc2 = nn.Linear(hidden_features, out_features)
self.act = act_layer()
self.drop = nn.Dropout(drop)
def forward(self, x):
"""Applies operations on input x and returns modified x, runs downsample if not None."""
x = self.norm(x)
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
return self.drop(x)
class Attention(torch.nn.Module):
"""
Multi-head attention module with support for spatial awareness, applying attention biases based on spatial
resolution. Implements trainable attention biases for each unique offset between spatial positions in the resolution
grid.
Attributes:
ab (Tensor, optional): Cached attention biases for inference, deleted during training.
"""
def __init__(
self,
dim,
key_dim,
num_heads=8,
attn_ratio=4,
resolution=(14, 14),
):
"""
Initializes the Attention module.
Args:
dim (int): The dimensionality of the input and output.
key_dim (int): The dimensionality of the keys and queries.
num_heads (int, optional): Number of attention heads. Default is 8.
attn_ratio (float, optional): Attention ratio, affecting the dimensions of the value vectors. Default is 4.
resolution (Tuple[int, int], optional): Spatial resolution of the input feature map. Default is (14, 14).
Raises:
AssertionError: If `resolution` is not a tuple of length 2.
"""
super().__init__()
assert isinstance(resolution, tuple) and len(resolution) == 2
self.num_heads = num_heads
self.scale = key_dim**-0.5
self.key_dim = key_dim
self.nh_kd = nh_kd = key_dim * num_heads
self.d = int(attn_ratio * key_dim)
self.dh = int(attn_ratio * key_dim) * num_heads
self.attn_ratio = attn_ratio
h = self.dh + nh_kd * 2
self.norm = nn.LayerNorm(dim)
self.qkv = nn.Linear(dim, h)
self.proj = nn.Linear(self.dh, dim)
points = list(itertools.product(range(resolution[0]), range(resolution[1])))
N = len(points)
attention_offsets = {}
idxs = []
for p1 in points:
for p2 in points:
offset = (abs(p1[0] - p2[0]), abs(p1[1] - p2[1]))
if offset not in attention_offsets:
attention_offsets[offset] = len(attention_offsets)
idxs.append(attention_offsets[offset])
self.attention_biases = torch.nn.Parameter(torch.zeros(num_heads, len(attention_offsets)))
self.register_buffer("attention_bias_idxs", torch.LongTensor(idxs).view(N, N), persistent=False)
@torch.no_grad()
def train(self, mode=True):
"""Sets the module in training mode and handles attribute 'ab' based on the mode."""
super().train(mode)
if mode and hasattr(self, "ab"):
del self.ab
else:
self.ab = self.attention_biases[:, self.attention_bias_idxs]
def forward(self, x): # x
"""Performs forward pass over the input tensor 'x' by applying normalization and querying keys/values."""
B, N, _ = x.shape # B, N, C
# Normalization
x = self.norm(x)
qkv = self.qkv(x)
# (B, N, num_heads, d)
q, k, v = qkv.view(B, N, self.num_heads, -1).split([self.key_dim, self.key_dim, self.d], dim=3)
# (B, num_heads, N, d)
q = q.permute(0, 2, 1, 3)
k = k.permute(0, 2, 1, 3)
v = v.permute(0, 2, 1, 3)
self.ab = self.ab.to(self.attention_biases.device)
attn = (q @ k.transpose(-2, -1)) * self.scale + (
self.attention_biases[:, self.attention_bias_idxs] if self.training else self.ab
)
attn = attn.softmax(dim=-1)
x = (attn @ v).transpose(1, 2).reshape(B, N, self.dh)
return self.proj(x)
class TinyViTBlock(nn.Module):
"""TinyViT Block that applies self-attention and a local convolution to the input."""
def __init__(
self,
dim,
input_resolution,
num_heads,
window_size=7,
mlp_ratio=4.0,
drop=0.0,
drop_path=0.0,
local_conv_size=3,
activation=nn.GELU,
):
"""
Initializes the TinyViTBlock.
Args:
dim (int): The dimensionality of the input and output.
input_resolution (Tuple[int, int]): Spatial resolution of the input feature map.
num_heads (int): Number of attention heads.
window_size (int, optional): Window size for attention. Default is 7.
mlp_ratio (float, optional): Ratio of mlp hidden dim to embedding dim. Default is 4.
drop (float, optional): Dropout rate. Default is 0.
drop_path (float, optional): Stochastic depth rate. Default is 0.
local_conv_size (int, optional): The kernel size of the local convolution. Default is 3.
activation (torch.nn, optional): Activation function for MLP. Default is nn.GELU.
Raises:
AssertionError: If `window_size` is not greater than 0.
AssertionError: If `dim` is not divisible by `num_heads`.
"""
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.num_heads = num_heads
assert window_size > 0, "window_size must be greater than 0"
self.window_size = window_size
self.mlp_ratio = mlp_ratio
# NOTE: `DropPath` is needed only for training.
# self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.drop_path = nn.Identity()
assert dim % num_heads == 0, "dim must be divisible by num_heads"
head_dim = dim // num_heads
window_resolution = (window_size, window_size)
self.attn = Attention(dim, head_dim, num_heads, attn_ratio=1, resolution=window_resolution)
mlp_hidden_dim = int(dim * mlp_ratio)
mlp_activation = activation
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=mlp_activation, drop=drop)
pad = local_conv_size // 2
self.local_conv = Conv2d_BN(dim, dim, ks=local_conv_size, stride=1, pad=pad, groups=dim)
def forward(self, x):
"""Applies attention-based transformation or padding to input 'x' before passing it through a local
convolution.
"""
H, W = self.input_resolution
B, L, C = x.shape
assert L == H * W, "input feature has wrong size"
res_x = x
if H == self.window_size and W == self.window_size:
x = self.attn(x)
else:
x = x.view(B, H, W, C)
pad_b = (self.window_size - H % self.window_size) % self.window_size
pad_r = (self.window_size - W % self.window_size) % self.window_size
padding = pad_b > 0 or pad_r > 0
if padding:
x = F.pad(x, (0, 0, 0, pad_r, 0, pad_b))
pH, pW = H + pad_b, W + pad_r
nH = pH // self.window_size
nW = pW // self.window_size
# Window partition
x = (
x.view(B, nH, self.window_size, nW, self.window_size, C)
.transpose(2, 3)
.reshape(B * nH * nW, self.window_size * self.window_size, C)
)
x = self.attn(x)
# Window reverse
x = x.view(B, nH, nW, self.window_size, self.window_size, C).transpose(2, 3).reshape(B, pH, pW, C)
if padding:
x = x[:, :H, :W].contiguous()
x = x.view(B, L, C)
x = res_x + self.drop_path(x)
x = x.transpose(1, 2).reshape(B, C, H, W)
x = self.local_conv(x)
x = x.view(B, C, L).transpose(1, 2)
return x + self.drop_path(self.mlp(x))
def extra_repr(self) -> str:
"""Returns a formatted string representing the TinyViTBlock's parameters: dimension, input resolution, number of
attentions heads, window size, and MLP ratio.
"""
return (
f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, "
f"window_size={self.window_size}, mlp_ratio={self.mlp_ratio}"
)
class BasicLayer(nn.Module):
"""A basic TinyViT layer for one stage in a TinyViT architecture."""
def __init__(
self,
dim,
input_resolution,
depth,
num_heads,
window_size,
mlp_ratio=4.0,
drop=0.0,
drop_path=0.0,
downsample=None,
use_checkpoint=False,
local_conv_size=3,
activation=nn.GELU,
out_dim=None,
):
"""
Initializes the BasicLayer.
Args:
dim (int): The dimensionality of the input and output.
input_resolution (Tuple[int, int]): Spatial resolution of the input feature map.
depth (int): Number of TinyViT blocks.
num_heads (int): Number of attention heads.
window_size (int): Local window size.
mlp_ratio (float, optional): Ratio of mlp hidden dim to embedding dim. Default is 4.
drop (float, optional): Dropout rate. Default is 0.
drop_path (float | tuple[float], optional): Stochastic depth rate. Default is 0.
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default is None.
use_checkpoint (bool, optional): Whether to use checkpointing to save memory. Default is False.
local_conv_size (int, optional): Kernel size of the local convolution. Default is 3.
activation (torch.nn, optional): Activation function for MLP. Default is nn.GELU.
out_dim (int | None, optional): The output dimension of the layer. Default is None.
Raises:
ValueError: If `drop_path` is a list of float but its length doesn't match `depth`.
"""
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.depth = depth
self.use_checkpoint = use_checkpoint
# Build blocks
self.blocks = nn.ModuleList(
[
TinyViTBlock(
dim=dim,
input_resolution=input_resolution,
num_heads=num_heads,
window_size=window_size,
mlp_ratio=mlp_ratio,
drop=drop,
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
local_conv_size=local_conv_size,
activation=activation,
)
for i in range(depth)
]
)
# Patch merging layer
self.downsample = (
None
if downsample is None
else downsample(input_resolution, dim=dim, out_dim=out_dim, activation=activation)
)
def forward(self, x):
"""Performs forward propagation on the input tensor and returns a normalized tensor."""
for blk in self.blocks:
x = checkpoint.checkpoint(blk, x) if self.use_checkpoint else blk(x)
return x if self.downsample is None else self.downsample(x)
def extra_repr(self) -> str:
"""Returns a string representation of the extra_repr function with the layer's parameters."""
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
class LayerNorm2d(nn.Module):
"""A PyTorch implementation of Layer Normalization in 2D."""
def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
"""Initialize LayerNorm2d with the number of channels and an optional epsilon."""
super().__init__()
self.weight = nn.Parameter(torch.ones(num_channels))
self.bias = nn.Parameter(torch.zeros(num_channels))
self.eps = eps
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Perform a forward pass, normalizing the input tensor."""
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
return self.weight[:, None, None] * x + self.bias[:, None, None]
class TinyViT(nn.Module):
"""
The TinyViT architecture for vision tasks.
Attributes:
img_size (int): Input image size.
in_chans (int): Number of input channels.
num_classes (int): Number of classification classes.
embed_dims (List[int]): List of embedding dimensions for each layer.
depths (List[int]): List of depths for each layer.
num_heads (List[int]): List of number of attention heads for each layer.
window_sizes (List[int]): List of window sizes for each layer.
mlp_ratio (float): Ratio of MLP hidden dimension to embedding dimension.
drop_rate (float): Dropout rate for drop layers.
drop_path_rate (float): Drop path rate for stochastic depth.
use_checkpoint (bool): Use checkpointing for efficient memory usage.
mbconv_expand_ratio (float): Expansion ratio for MBConv layer.
local_conv_size (int): Local convolution kernel size.
layer_lr_decay (float): Layer-wise learning rate decay.
Note:
This implementation is generalized to accept a list of depths, attention heads,
embedding dimensions and window sizes, which allows you to create a
"stack" of TinyViT models of varying configurations.
"""
def __init__(
self,
img_size=224,
in_chans=3,
num_classes=1000,
embed_dims=[96, 192, 384, 768],
depths=[2, 2, 6, 2],
num_heads=[3, 6, 12, 24],
window_sizes=[7, 7, 14, 7],
mlp_ratio=4.0,
drop_rate=0.0,
drop_path_rate=0.1,
use_checkpoint=False,
mbconv_expand_ratio=4.0,
local_conv_size=3,
layer_lr_decay=1.0,
):
"""
Initializes the TinyViT model.
Args:
img_size (int, optional): The input image size. Defaults to 224.
in_chans (int, optional): Number of input channels. Defaults to 3.
num_classes (int, optional): Number of classification classes. Defaults to 1000.
embed_dims (List[int], optional): List of embedding dimensions for each layer. Defaults to [96, 192, 384, 768].
depths (List[int], optional): List of depths for each layer. Defaults to [2, 2, 6, 2].
num_heads (List[int], optional): List of number of attention heads for each layer. Defaults to [3, 6, 12, 24].
window_sizes (List[int], optional): List of window sizes for each layer. Defaults to [7, 7, 14, 7].
mlp_ratio (float, optional): Ratio of MLP hidden dimension to embedding dimension. Defaults to 4.
drop_rate (float, optional): Dropout rate. Defaults to 0.
drop_path_rate (float, optional): Drop path rate for stochastic depth. Defaults to 0.1.
use_checkpoint (bool, optional): Whether to use checkpointing for efficient memory usage. Defaults to False.
mbconv_expand_ratio (float, optional): Expansion ratio for MBConv layer. Defaults to 4.0.
local_conv_size (int, optional): Local convolution kernel size. Defaults to 3.
layer_lr_decay (float, optional): Layer-wise learning rate decay. Defaults to 1.0.
"""
super().__init__()
self.img_size = img_size
self.num_classes = num_classes
self.depths = depths
self.num_layers = len(depths)
self.mlp_ratio = mlp_ratio
activation = nn.GELU
self.patch_embed = PatchEmbed(
in_chans=in_chans, embed_dim=embed_dims[0], resolution=img_size, activation=activation
)
patches_resolution = self.patch_embed.patches_resolution
self.patches_resolution = patches_resolution
# Stochastic depth
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
# Build layers
self.layers = nn.ModuleList()
for i_layer in range(self.num_layers):
kwargs = dict(
dim=embed_dims[i_layer],
input_resolution=(
patches_resolution[0] // (2 ** (i_layer - 1 if i_layer == 3 else i_layer)),
patches_resolution[1] // (2 ** (i_layer - 1 if i_layer == 3 else i_layer)),
),
# input_resolution=(patches_resolution[0] // (2 ** i_layer),
# patches_resolution[1] // (2 ** i_layer)),
depth=depths[i_layer],
drop_path=dpr[sum(depths[:i_layer]) : sum(depths[: i_layer + 1])],
downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
use_checkpoint=use_checkpoint,
out_dim=embed_dims[min(i_layer + 1, len(embed_dims) - 1)],
activation=activation,
)
if i_layer == 0:
layer = ConvLayer(conv_expand_ratio=mbconv_expand_ratio, **kwargs)
else:
layer = BasicLayer(
num_heads=num_heads[i_layer],
window_size=window_sizes[i_layer],
mlp_ratio=self.mlp_ratio,
drop=drop_rate,
local_conv_size=local_conv_size,
**kwargs,
)
self.layers.append(layer)
# Classifier head
self.norm_head = nn.LayerNorm(embed_dims[-1])
self.head = nn.Linear(embed_dims[-1], num_classes) if num_classes > 0 else torch.nn.Identity()
# Init weights
self.apply(self._init_weights)
self.set_layer_lr_decay(layer_lr_decay)
self.neck = nn.Sequential(
nn.Conv2d(
embed_dims[-1],
256,
kernel_size=1,
bias=False,
),
LayerNorm2d(256),
nn.Conv2d(
256,
256,
kernel_size=3,
padding=1,
bias=False,
),
LayerNorm2d(256),
)
def set_layer_lr_decay(self, layer_lr_decay):
"""Sets the learning rate decay for each layer in the TinyViT model."""
decay_rate = layer_lr_decay
# Layers -> blocks (depth)
depth = sum(self.depths)
lr_scales = [decay_rate ** (depth - i - 1) for i in range(depth)]
def _set_lr_scale(m, scale):
"""Sets the learning rate scale for each layer in the model based on the layer's depth."""
for p in m.parameters():
p.lr_scale = scale
self.patch_embed.apply(lambda x: _set_lr_scale(x, lr_scales[0]))
i = 0
for layer in self.layers:
for block in layer.blocks:
block.apply(lambda x: _set_lr_scale(x, lr_scales[i]))
i += 1
if layer.downsample is not None:
layer.downsample.apply(lambda x: _set_lr_scale(x, lr_scales[i - 1]))
assert i == depth
for m in [self.norm_head, self.head]:
m.apply(lambda x: _set_lr_scale(x, lr_scales[-1]))
for k, p in self.named_parameters():
p.param_name = k
def _check_lr_scale(m):
"""Checks if the learning rate scale attribute is present in module's parameters."""
for p in m.parameters():
assert hasattr(p, "lr_scale"), p.param_name
self.apply(_check_lr_scale)
def _init_weights(self, m):
"""Initializes weights for linear layers and layer normalization in the given module."""
if isinstance(m, nn.Linear):
# NOTE: This initialization is needed only for training.
# trunc_normal_(m.weight, std=.02)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay_keywords(self):
"""Returns a dictionary of parameter names where weight decay should not be applied."""
return {"attention_biases"}
def forward_features(self, x):
"""Runs the input through the model layers and returns the transformed output."""
x = self.patch_embed(x) # x input is (N, C, H, W)
x = self.layers[0](x)
start_i = 1
for i in range(start_i, len(self.layers)):
layer = self.layers[i]
x = layer(x)
B, _, C = x.shape
x = x.view(B, 64, 64, C)
x = x.permute(0, 3, 1, 2)
return self.neck(x)
def forward(self, x):
"""Executes a forward pass on the input tensor through the constructed model layers."""
return self.forward_features(x)

View File

@ -0,0 +1,274 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
import math
from typing import Tuple, Type
import torch
from torch import Tensor, nn
from ultralytics.nn.modules import MLPBlock
class TwoWayTransformer(nn.Module):
"""
A Two-Way Transformer module that enables the simultaneous attention to both image and query points. This class
serves as a specialized transformer decoder that attends to an input image using queries whose positional embedding
is supplied. This is particularly useful for tasks like object detection, image segmentation, and point cloud
processing.
Attributes:
depth (int): The number of layers in the transformer.
embedding_dim (int): The channel dimension for the input embeddings.
num_heads (int): The number of heads for multihead attention.
mlp_dim (int): The internal channel dimension for the MLP block.
layers (nn.ModuleList): The list of TwoWayAttentionBlock layers that make up the transformer.
final_attn_token_to_image (Attention): The final attention layer applied from the queries to the image.
norm_final_attn (nn.LayerNorm): The layer normalization applied to the final queries.
"""
def __init__(
self,
depth: int,
embedding_dim: int,
num_heads: int,
mlp_dim: int,
activation: Type[nn.Module] = nn.ReLU,
attention_downsample_rate: int = 2,
) -> None:
"""
A transformer decoder that attends to an input image using queries whose positional embedding is supplied.
Args:
depth (int): number of layers in the transformer
embedding_dim (int): the channel dimension for the input embeddings
num_heads (int): the number of heads for multihead attention. Must
divide embedding_dim
mlp_dim (int): the channel dimension internal to the MLP block
activation (nn.Module): the activation to use in the MLP block
"""
super().__init__()
self.depth = depth
self.embedding_dim = embedding_dim
self.num_heads = num_heads
self.mlp_dim = mlp_dim
self.layers = nn.ModuleList()
for i in range(depth):
self.layers.append(
TwoWayAttentionBlock(
embedding_dim=embedding_dim,
num_heads=num_heads,
mlp_dim=mlp_dim,
activation=activation,
attention_downsample_rate=attention_downsample_rate,
skip_first_layer_pe=(i == 0),
)
)
self.final_attn_token_to_image = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate)
self.norm_final_attn = nn.LayerNorm(embedding_dim)
def forward(
self,
image_embedding: Tensor,
image_pe: Tensor,
point_embedding: Tensor,
) -> Tuple[Tensor, Tensor]:
"""
Args:
image_embedding (torch.Tensor): image to attend to. Should be shape B x embedding_dim x h x w for any h and w.
image_pe (torch.Tensor): the positional encoding to add to the image. Must have same shape as image_embedding.
point_embedding (torch.Tensor): the embedding to add to the query points.
Must have shape B x N_points x embedding_dim for any N_points.
Returns:
(torch.Tensor): the processed point_embedding
(torch.Tensor): the processed image_embedding
"""
# BxCxHxW -> BxHWxC == B x N_image_tokens x C
bs, c, h, w = image_embedding.shape
image_embedding = image_embedding.flatten(2).permute(0, 2, 1)
image_pe = image_pe.flatten(2).permute(0, 2, 1)
# Prepare queries
queries = point_embedding
keys = image_embedding
# Apply transformer blocks and final layernorm
for layer in self.layers:
queries, keys = layer(
queries=queries,
keys=keys,
query_pe=point_embedding,
key_pe=image_pe,
)
# Apply the final attention layer from the points to the image
q = queries + point_embedding
k = keys + image_pe
attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys)
queries = queries + attn_out
queries = self.norm_final_attn(queries)
return queries, keys
class TwoWayAttentionBlock(nn.Module):
"""
An attention block that performs both self-attention and cross-attention in two directions: queries to keys and
keys to queries. This block consists of four main layers: (1) self-attention on sparse inputs, (2) cross-attention
of sparse inputs to dense inputs, (3) an MLP block on sparse inputs, and (4) cross-attention of dense inputs to
sparse inputs.
Attributes:
self_attn (Attention): The self-attention layer for the queries.
norm1 (nn.LayerNorm): Layer normalization following the first attention block.
cross_attn_token_to_image (Attention): Cross-attention layer from queries to keys.
norm2 (nn.LayerNorm): Layer normalization following the second attention block.
mlp (MLPBlock): MLP block that transforms the query embeddings.
norm3 (nn.LayerNorm): Layer normalization following the MLP block.
norm4 (nn.LayerNorm): Layer normalization following the third attention block.
cross_attn_image_to_token (Attention): Cross-attention layer from keys to queries.
skip_first_layer_pe (bool): Whether to skip the positional encoding in the first layer.
"""
def __init__(
self,
embedding_dim: int,
num_heads: int,
mlp_dim: int = 2048,
activation: Type[nn.Module] = nn.ReLU,
attention_downsample_rate: int = 2,
skip_first_layer_pe: bool = False,
) -> None:
"""
A transformer block with four layers: (1) self-attention of sparse inputs, (2) cross attention of sparse
inputs to dense inputs, (3) mlp block on sparse inputs, and (4) cross attention of dense inputs to sparse
inputs.
Args:
embedding_dim (int): the channel dimension of the embeddings
num_heads (int): the number of heads in the attention layers
mlp_dim (int): the hidden dimension of the mlp block
activation (nn.Module): the activation of the mlp block
skip_first_layer_pe (bool): skip the PE on the first layer
"""
super().__init__()
self.self_attn = Attention(embedding_dim, num_heads)
self.norm1 = nn.LayerNorm(embedding_dim)
self.cross_attn_token_to_image = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate)
self.norm2 = nn.LayerNorm(embedding_dim)
self.mlp = MLPBlock(embedding_dim, mlp_dim, activation)
self.norm3 = nn.LayerNorm(embedding_dim)
self.norm4 = nn.LayerNorm(embedding_dim)
self.cross_attn_image_to_token = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate)
self.skip_first_layer_pe = skip_first_layer_pe
def forward(self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor) -> Tuple[Tensor, Tensor]:
"""Apply self-attention and cross-attention to queries and keys and return the processed embeddings."""
# Self attention block
if self.skip_first_layer_pe:
queries = self.self_attn(q=queries, k=queries, v=queries)
else:
q = queries + query_pe
attn_out = self.self_attn(q=q, k=q, v=queries)
queries = queries + attn_out
queries = self.norm1(queries)
# Cross attention block, tokens attending to image embedding
q = queries + query_pe
k = keys + key_pe
attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys)
queries = queries + attn_out
queries = self.norm2(queries)
# MLP block
mlp_out = self.mlp(queries)
queries = queries + mlp_out
queries = self.norm3(queries)
# Cross attention block, image embedding attending to tokens
q = queries + query_pe
k = keys + key_pe
attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries)
keys = keys + attn_out
keys = self.norm4(keys)
return queries, keys
class Attention(nn.Module):
"""An attention layer that allows for downscaling the size of the embedding after projection to queries, keys, and
values.
"""
def __init__(
self,
embedding_dim: int,
num_heads: int,
downsample_rate: int = 1,
) -> None:
"""
Initializes the Attention model with the given dimensions and settings.
Args:
embedding_dim (int): The dimensionality of the input embeddings.
num_heads (int): The number of attention heads.
downsample_rate (int, optional): The factor by which the internal dimensions are downsampled. Defaults to 1.
Raises:
AssertionError: If 'num_heads' does not evenly divide the internal dimension (embedding_dim / downsample_rate).
"""
super().__init__()
self.embedding_dim = embedding_dim
self.internal_dim = embedding_dim // downsample_rate
self.num_heads = num_heads
assert self.internal_dim % num_heads == 0, "num_heads must divide embedding_dim."
self.q_proj = nn.Linear(embedding_dim, self.internal_dim)
self.k_proj = nn.Linear(embedding_dim, self.internal_dim)
self.v_proj = nn.Linear(embedding_dim, self.internal_dim)
self.out_proj = nn.Linear(self.internal_dim, embedding_dim)
@staticmethod
def _separate_heads(x: Tensor, num_heads: int) -> Tensor:
"""Separate the input tensor into the specified number of attention heads."""
b, n, c = x.shape
x = x.reshape(b, n, num_heads, c // num_heads)
return x.transpose(1, 2) # B x N_heads x N_tokens x C_per_head
@staticmethod
def _recombine_heads(x: Tensor) -> Tensor:
"""Recombine the separated attention heads into a single tensor."""
b, n_heads, n_tokens, c_per_head = x.shape
x = x.transpose(1, 2)
return x.reshape(b, n_tokens, n_heads * c_per_head) # B x N_tokens x C
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
"""Compute the attention output given the input query, key, and value tensors."""
# Input projections
q = self.q_proj(q)
k = self.k_proj(k)
v = self.v_proj(v)
# Separate into heads
q = self._separate_heads(q, self.num_heads)
k = self._separate_heads(k, self.num_heads)
v = self._separate_heads(v, self.num_heads)
# Attention
_, _, _, c_per_head = q.shape
attn = q @ k.permute(0, 1, 3, 2) # B x N_heads x N_tokens x N_tokens
attn = attn / math.sqrt(c_per_head)
attn = torch.softmax(attn, dim=-1)
# Get output
out = attn @ v
out = self._recombine_heads(out)
return self.out_proj(out)