mirror of
https://gitee.com/nanjing-yimao-information/ieemoo-ai-gift.git
synced 2025-08-20 06:10:26 +00:00
update
This commit is contained in:
7
ultralytics/models/nas/__init__.py
Normal file
7
ultralytics/models/nas/__init__.py
Normal file
@ -0,0 +1,7 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
from .model import NAS
|
||||
from .predict import NASPredictor
|
||||
from .val import NASValidator
|
||||
|
||||
__all__ = "NASPredictor", "NASValidator", "NAS"
|
83
ultralytics/models/nas/model.py
Normal file
83
ultralytics/models/nas/model.py
Normal file
@ -0,0 +1,83 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
"""
|
||||
YOLO-NAS model interface.
|
||||
|
||||
Example:
|
||||
```python
|
||||
from ultralytics import NAS
|
||||
|
||||
model = NAS('yolo_nas_s')
|
||||
results = model.predict('ultralytics/assets/bus.jpg')
|
||||
```
|
||||
"""
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
|
||||
from ultralytics.engine.model import Model
|
||||
from ultralytics.utils.torch_utils import model_info, smart_inference_mode
|
||||
from .predict import NASPredictor
|
||||
from .val import NASValidator
|
||||
|
||||
|
||||
class NAS(Model):
|
||||
"""
|
||||
YOLO NAS model for object detection.
|
||||
|
||||
This class provides an interface for the YOLO-NAS models and extends the `Model` class from Ultralytics engine.
|
||||
It is designed to facilitate the task of object detection using pre-trained or custom-trained YOLO-NAS models.
|
||||
|
||||
Example:
|
||||
```python
|
||||
from ultralytics import NAS
|
||||
|
||||
model = NAS('yolo_nas_s')
|
||||
results = model.predict('ultralytics/assets/bus.jpg')
|
||||
```
|
||||
|
||||
Attributes:
|
||||
model (str): Path to the pre-trained model or model name. Defaults to 'yolo_nas_s.pt'.
|
||||
|
||||
Note:
|
||||
YOLO-NAS models only support pre-trained models. Do not provide YAML configuration files.
|
||||
"""
|
||||
|
||||
def __init__(self, model="yolo_nas_s.pt") -> None:
|
||||
"""Initializes the NAS model with the provided or default 'yolo_nas_s.pt' model."""
|
||||
assert Path(model).suffix not in (".yaml", ".yml"), "YOLO-NAS models only support pre-trained models."
|
||||
super().__init__(model, task="detect")
|
||||
|
||||
@smart_inference_mode()
|
||||
def _load(self, weights: str, task: str):
|
||||
"""Loads an existing NAS model weights or creates a new NAS model with pretrained weights if not provided."""
|
||||
import super_gradients
|
||||
|
||||
suffix = Path(weights).suffix
|
||||
if suffix == ".pt":
|
||||
self.model = torch.load(weights)
|
||||
elif suffix == "":
|
||||
self.model = super_gradients.training.models.get(weights, pretrained_weights="coco")
|
||||
# Standardize model
|
||||
self.model.fuse = lambda verbose=True: self.model
|
||||
self.model.stride = torch.tensor([32])
|
||||
self.model.names = dict(enumerate(self.model._class_names))
|
||||
self.model.is_fused = lambda: False # for info()
|
||||
self.model.yaml = {} # for info()
|
||||
self.model.pt_path = weights # for export()
|
||||
self.model.task = "detect" # for export()
|
||||
|
||||
def info(self, detailed=False, verbose=True):
|
||||
"""
|
||||
Logs model info.
|
||||
|
||||
Args:
|
||||
detailed (bool): Show detailed information about model.
|
||||
verbose (bool): Controls verbosity.
|
||||
"""
|
||||
return model_info(self.model, detailed=detailed, verbose=verbose, imgsz=640)
|
||||
|
||||
@property
|
||||
def task_map(self):
|
||||
"""Returns a dictionary mapping tasks to respective predictor and validator classes."""
|
||||
return {"detect": {"predictor": NASPredictor, "validator": NASValidator}}
|
60
ultralytics/models/nas/predict.py
Normal file
60
ultralytics/models/nas/predict.py
Normal file
@ -0,0 +1,60 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
import torch
|
||||
|
||||
from ultralytics.engine.predictor import BasePredictor
|
||||
from ultralytics.engine.results import Results
|
||||
from ultralytics.utils import ops
|
||||
|
||||
|
||||
class NASPredictor(BasePredictor):
|
||||
"""
|
||||
Ultralytics YOLO NAS Predictor for object detection.
|
||||
|
||||
This class extends the `BasePredictor` from Ultralytics engine and is responsible for post-processing the
|
||||
raw predictions generated by the YOLO NAS models. It applies operations like non-maximum suppression and
|
||||
scaling the bounding boxes to fit the original image dimensions.
|
||||
|
||||
Attributes:
|
||||
args (Namespace): Namespace containing various configurations for post-processing.
|
||||
|
||||
Example:
|
||||
```python
|
||||
from ultralytics import NAS
|
||||
|
||||
model = NAS('yolo_nas_s')
|
||||
predictor = model.predictor
|
||||
# Assumes that raw_preds, img, orig_imgs are available
|
||||
results = predictor.postprocess(raw_preds, img, orig_imgs)
|
||||
```
|
||||
|
||||
Note:
|
||||
Typically, this class is not instantiated directly. It is used internally within the `NAS` class.
|
||||
"""
|
||||
|
||||
def postprocess(self, preds_in, img, orig_imgs):
|
||||
"""Postprocess predictions and returns a list of Results objects."""
|
||||
|
||||
# Cat boxes and class scores
|
||||
boxes = ops.xyxy2xywh(preds_in[0][0])
|
||||
preds = torch.cat((boxes, preds_in[0][1]), -1).permute(0, 2, 1)
|
||||
|
||||
preds = ops.non_max_suppression(
|
||||
preds,
|
||||
self.args.conf,
|
||||
self.args.iou,
|
||||
agnostic=self.args.agnostic_nms,
|
||||
max_det=self.args.max_det,
|
||||
classes=self.args.classes,
|
||||
)
|
||||
|
||||
if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list
|
||||
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
|
||||
|
||||
results = []
|
||||
for i, pred in enumerate(preds):
|
||||
orig_img = orig_imgs[i]
|
||||
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
|
||||
img_path = self.batch[0][i]
|
||||
results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred))
|
||||
return results
|
50
ultralytics/models/nas/val.py
Normal file
50
ultralytics/models/nas/val.py
Normal file
@ -0,0 +1,50 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
import torch
|
||||
|
||||
from ultralytics.models.yolo.detect import DetectionValidator
|
||||
from ultralytics.utils import ops
|
||||
|
||||
__all__ = ["NASValidator"]
|
||||
|
||||
|
||||
class NASValidator(DetectionValidator):
|
||||
"""
|
||||
Ultralytics YOLO NAS Validator for object detection.
|
||||
|
||||
Extends `DetectionValidator` from the Ultralytics models package and is designed to post-process the raw predictions
|
||||
generated by YOLO NAS models. It performs non-maximum suppression to remove overlapping and low-confidence boxes,
|
||||
ultimately producing the final detections.
|
||||
|
||||
Attributes:
|
||||
args (Namespace): Namespace containing various configurations for post-processing, such as confidence and IoU thresholds.
|
||||
lb (torch.Tensor): Optional tensor for multilabel NMS.
|
||||
|
||||
Example:
|
||||
```python
|
||||
from ultralytics import NAS
|
||||
|
||||
model = NAS('yolo_nas_s')
|
||||
validator = model.validator
|
||||
# Assumes that raw_preds are available
|
||||
final_preds = validator.postprocess(raw_preds)
|
||||
```
|
||||
|
||||
Note:
|
||||
This class is generally not instantiated directly but is used internally within the `NAS` class.
|
||||
"""
|
||||
|
||||
def postprocess(self, preds_in):
|
||||
"""Apply Non-maximum suppression to prediction outputs."""
|
||||
boxes = ops.xyxy2xywh(preds_in[0][0])
|
||||
preds = torch.cat((boxes, preds_in[0][1]), -1).permute(0, 2, 1)
|
||||
return ops.non_max_suppression(
|
||||
preds,
|
||||
self.args.conf,
|
||||
self.args.iou,
|
||||
labels=self.lb,
|
||||
multi_label=False,
|
||||
agnostic=self.args.single_cls,
|
||||
max_det=self.args.max_det,
|
||||
max_time_img=0.5,
|
||||
)
|
Reference in New Issue
Block a user