mirror of
https://gitee.com/nanjing-yimao-information/ieemoo-ai-gift.git
synced 2025-08-20 06:10:26 +00:00
update
This commit is contained in:
5
ultralytics/data/explorer/__init__.py
Normal file
5
ultralytics/data/explorer/__init__.py
Normal file
@ -0,0 +1,5 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
from .utils import plot_query_result
|
||||
|
||||
__all__ = ["plot_query_result"]
|
472
ultralytics/data/explorer/explorer.py
Normal file
472
ultralytics/data/explorer/explorer.py
Normal file
@ -0,0 +1,472 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
from io import BytesIO
|
||||
from pathlib import Path
|
||||
from typing import Any, List, Tuple, Union
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from matplotlib import pyplot as plt
|
||||
from pandas import DataFrame
|
||||
from tqdm import tqdm
|
||||
|
||||
from ultralytics.data.augment import Format
|
||||
from ultralytics.data.dataset import YOLODataset
|
||||
from ultralytics.data.utils import check_det_dataset
|
||||
from ultralytics.models.yolo.model import YOLO
|
||||
from ultralytics.utils import LOGGER, IterableSimpleNamespace, checks, USER_CONFIG_DIR
|
||||
from .utils import get_sim_index_schema, get_table_schema, plot_query_result, prompt_sql_query, sanitize_batch
|
||||
|
||||
|
||||
class ExplorerDataset(YOLODataset):
|
||||
def __init__(self, *args, data: dict = None, **kwargs) -> None:
|
||||
super().__init__(*args, data=data, **kwargs)
|
||||
|
||||
def load_image(self, i: int) -> Union[Tuple[np.ndarray, Tuple[int, int], Tuple[int, int]], Tuple[None, None, None]]:
|
||||
"""Loads 1 image from dataset index 'i' without any resize ops."""
|
||||
im, f, fn = self.ims[i], self.im_files[i], self.npy_files[i]
|
||||
if im is None: # not cached in RAM
|
||||
if fn.exists(): # load npy
|
||||
im = np.load(fn)
|
||||
else: # read image
|
||||
im = cv2.imread(f) # BGR
|
||||
if im is None:
|
||||
raise FileNotFoundError(f"Image Not Found {f}")
|
||||
h0, w0 = im.shape[:2] # orig hw
|
||||
return im, (h0, w0), im.shape[:2]
|
||||
|
||||
return self.ims[i], self.im_hw0[i], self.im_hw[i]
|
||||
|
||||
def build_transforms(self, hyp: IterableSimpleNamespace = None):
|
||||
"""Creates transforms for dataset images without resizing."""
|
||||
return Format(
|
||||
bbox_format="xyxy",
|
||||
normalize=False,
|
||||
return_mask=self.use_segments,
|
||||
return_keypoint=self.use_keypoints,
|
||||
batch_idx=True,
|
||||
mask_ratio=hyp.mask_ratio,
|
||||
mask_overlap=hyp.overlap_mask,
|
||||
)
|
||||
|
||||
|
||||
class Explorer:
|
||||
def __init__(
|
||||
self,
|
||||
data: Union[str, Path] = "coco128.yaml",
|
||||
model: str = "yolov8n.pt",
|
||||
uri: str = USER_CONFIG_DIR / "explorer",
|
||||
) -> None:
|
||||
# Note duckdb==0.10.0 bug https://github.com/ultralytics/ultralytics/pull/8181
|
||||
checks.check_requirements(["lancedb>=0.4.3", "duckdb<=0.9.2"])
|
||||
import lancedb
|
||||
|
||||
self.connection = lancedb.connect(uri)
|
||||
self.table_name = Path(data).name.lower() + "_" + model.lower()
|
||||
self.sim_idx_base_name = (
|
||||
f"{self.table_name}_sim_idx".lower()
|
||||
) # Use this name and append thres and top_k to reuse the table
|
||||
self.model = YOLO(model)
|
||||
self.data = data # None
|
||||
self.choice_set = None
|
||||
|
||||
self.table = None
|
||||
self.progress = 0
|
||||
|
||||
def create_embeddings_table(self, force: bool = False, split: str = "train") -> None:
|
||||
"""
|
||||
Create LanceDB table containing the embeddings of the images in the dataset. The table will be reused if it
|
||||
already exists. Pass force=True to overwrite the existing table.
|
||||
|
||||
Args:
|
||||
force (bool): Whether to overwrite the existing table or not. Defaults to False.
|
||||
split (str): Split of the dataset to use. Defaults to 'train'.
|
||||
|
||||
Example:
|
||||
```python
|
||||
exp = Explorer()
|
||||
exp.create_embeddings_table()
|
||||
```
|
||||
"""
|
||||
if self.table is not None and not force:
|
||||
LOGGER.info("Table already exists. Reusing it. Pass force=True to overwrite it.")
|
||||
return
|
||||
if self.table_name in self.connection.table_names() and not force:
|
||||
LOGGER.info(f"Table {self.table_name} already exists. Reusing it. Pass force=True to overwrite it.")
|
||||
self.table = self.connection.open_table(self.table_name)
|
||||
self.progress = 1
|
||||
return
|
||||
if self.data is None:
|
||||
raise ValueError("Data must be provided to create embeddings table")
|
||||
|
||||
data_info = check_det_dataset(self.data)
|
||||
if split not in data_info:
|
||||
raise ValueError(
|
||||
f"Split {split} is not found in the dataset. Available keys in the dataset are {list(data_info.keys())}"
|
||||
)
|
||||
|
||||
choice_set = data_info[split]
|
||||
choice_set = choice_set if isinstance(choice_set, list) else [choice_set]
|
||||
self.choice_set = choice_set
|
||||
dataset = ExplorerDataset(img_path=choice_set, data=data_info, augment=False, cache=False, task=self.model.task)
|
||||
|
||||
# Create the table schema
|
||||
batch = dataset[0]
|
||||
vector_size = self.model.embed(batch["im_file"], verbose=False)[0].shape[0]
|
||||
table = self.connection.create_table(self.table_name, schema=get_table_schema(vector_size), mode="overwrite")
|
||||
table.add(
|
||||
self._yield_batches(
|
||||
dataset,
|
||||
data_info,
|
||||
self.model,
|
||||
exclude_keys=["img", "ratio_pad", "resized_shape", "ori_shape", "batch_idx"],
|
||||
)
|
||||
)
|
||||
|
||||
self.table = table
|
||||
|
||||
def _yield_batches(self, dataset: ExplorerDataset, data_info: dict, model: YOLO, exclude_keys: List[str]):
|
||||
"""Generates batches of data for embedding, excluding specified keys."""
|
||||
for i in tqdm(range(len(dataset))):
|
||||
self.progress = float(i + 1) / len(dataset)
|
||||
batch = dataset[i]
|
||||
for k in exclude_keys:
|
||||
batch.pop(k, None)
|
||||
batch = sanitize_batch(batch, data_info)
|
||||
batch["vector"] = model.embed(batch["im_file"], verbose=False)[0].detach().tolist()
|
||||
yield [batch]
|
||||
|
||||
def query(
|
||||
self, imgs: Union[str, np.ndarray, List[str], List[np.ndarray]] = None, limit: int = 25
|
||||
) -> Any: # pyarrow.Table
|
||||
"""
|
||||
Query the table for similar images. Accepts a single image or a list of images.
|
||||
|
||||
Args:
|
||||
imgs (str or list): Path to the image or a list of paths to the images.
|
||||
limit (int): Number of results to return.
|
||||
|
||||
Returns:
|
||||
(pyarrow.Table): An arrow table containing the results. Supports converting to:
|
||||
- pandas dataframe: `result.to_pandas()`
|
||||
- dict of lists: `result.to_pydict()`
|
||||
|
||||
Example:
|
||||
```python
|
||||
exp = Explorer()
|
||||
exp.create_embeddings_table()
|
||||
similar = exp.query(img='https://ultralytics.com/images/zidane.jpg')
|
||||
```
|
||||
"""
|
||||
if self.table is None:
|
||||
raise ValueError("Table is not created. Please create the table first.")
|
||||
if isinstance(imgs, str):
|
||||
imgs = [imgs]
|
||||
assert isinstance(imgs, list), f"img must be a string or a list of strings. Got {type(imgs)}"
|
||||
embeds = self.model.embed(imgs)
|
||||
# Get avg if multiple images are passed (len > 1)
|
||||
embeds = torch.mean(torch.stack(embeds), 0).cpu().numpy() if len(embeds) > 1 else embeds[0].cpu().numpy()
|
||||
return self.table.search(embeds).limit(limit).to_arrow()
|
||||
|
||||
def sql_query(
|
||||
self, query: str, return_type: str = "pandas"
|
||||
) -> Union[DataFrame, Any, None]: # pandas.dataframe or pyarrow.Table
|
||||
"""
|
||||
Run a SQL-Like query on the table. Utilizes LanceDB predicate pushdown.
|
||||
|
||||
Args:
|
||||
query (str): SQL query to run.
|
||||
return_type (str): Type of the result to return. Can be either 'pandas' or 'arrow'. Defaults to 'pandas'.
|
||||
|
||||
Returns:
|
||||
(pyarrow.Table): An arrow table containing the results.
|
||||
|
||||
Example:
|
||||
```python
|
||||
exp = Explorer()
|
||||
exp.create_embeddings_table()
|
||||
query = "SELECT * FROM 'table' WHERE labels LIKE '%person%'"
|
||||
result = exp.sql_query(query)
|
||||
```
|
||||
"""
|
||||
assert return_type in {
|
||||
"pandas",
|
||||
"arrow",
|
||||
}, f"Return type should be either `pandas` or `arrow`, but got {return_type}"
|
||||
import duckdb
|
||||
|
||||
if self.table is None:
|
||||
raise ValueError("Table is not created. Please create the table first.")
|
||||
|
||||
# Note: using filter pushdown would be a better long term solution. Temporarily using duckdb for this.
|
||||
table = self.table.to_arrow() # noqa NOTE: Don't comment this. This line is used by DuckDB
|
||||
if not query.startswith("SELECT") and not query.startswith("WHERE"):
|
||||
raise ValueError(
|
||||
f"Query must start with SELECT or WHERE. You can either pass the entire query or just the WHERE clause. found {query}"
|
||||
)
|
||||
if query.startswith("WHERE"):
|
||||
query = f"SELECT * FROM 'table' {query}"
|
||||
LOGGER.info(f"Running query: {query}")
|
||||
|
||||
rs = duckdb.sql(query)
|
||||
if return_type == "arrow":
|
||||
return rs.arrow()
|
||||
elif return_type == "pandas":
|
||||
return rs.df()
|
||||
|
||||
def plot_sql_query(self, query: str, labels: bool = True) -> Image.Image:
|
||||
"""
|
||||
Plot the results of a SQL-Like query on the table.
|
||||
Args:
|
||||
query (str): SQL query to run.
|
||||
labels (bool): Whether to plot the labels or not.
|
||||
|
||||
Returns:
|
||||
(PIL.Image): Image containing the plot.
|
||||
|
||||
Example:
|
||||
```python
|
||||
exp = Explorer()
|
||||
exp.create_embeddings_table()
|
||||
query = "SELECT * FROM 'table' WHERE labels LIKE '%person%'"
|
||||
result = exp.plot_sql_query(query)
|
||||
```
|
||||
"""
|
||||
result = self.sql_query(query, return_type="arrow")
|
||||
if len(result) == 0:
|
||||
LOGGER.info("No results found.")
|
||||
return None
|
||||
img = plot_query_result(result, plot_labels=labels)
|
||||
return Image.fromarray(img)
|
||||
|
||||
def get_similar(
|
||||
self,
|
||||
img: Union[str, np.ndarray, List[str], List[np.ndarray]] = None,
|
||||
idx: Union[int, List[int]] = None,
|
||||
limit: int = 25,
|
||||
return_type: str = "pandas",
|
||||
) -> Union[DataFrame, Any]: # pandas.dataframe or pyarrow.Table
|
||||
"""
|
||||
Query the table for similar images. Accepts a single image or a list of images.
|
||||
|
||||
Args:
|
||||
img (str or list): Path to the image or a list of paths to the images.
|
||||
idx (int or list): Index of the image in the table or a list of indexes.
|
||||
limit (int): Number of results to return. Defaults to 25.
|
||||
return_type (str): Type of the result to return. Can be either 'pandas' or 'arrow'. Defaults to 'pandas'.
|
||||
|
||||
Returns:
|
||||
(pandas.DataFrame): A dataframe containing the results.
|
||||
|
||||
Example:
|
||||
```python
|
||||
exp = Explorer()
|
||||
exp.create_embeddings_table()
|
||||
similar = exp.get_similar(img='https://ultralytics.com/images/zidane.jpg')
|
||||
```
|
||||
"""
|
||||
assert return_type in {
|
||||
"pandas",
|
||||
"arrow",
|
||||
}, f"Return type should be either `pandas` or `arrow`, but got {return_type}"
|
||||
img = self._check_imgs_or_idxs(img, idx)
|
||||
similar = self.query(img, limit=limit)
|
||||
|
||||
if return_type == "arrow":
|
||||
return similar
|
||||
elif return_type == "pandas":
|
||||
return similar.to_pandas()
|
||||
|
||||
def plot_similar(
|
||||
self,
|
||||
img: Union[str, np.ndarray, List[str], List[np.ndarray]] = None,
|
||||
idx: Union[int, List[int]] = None,
|
||||
limit: int = 25,
|
||||
labels: bool = True,
|
||||
) -> Image.Image:
|
||||
"""
|
||||
Plot the similar images. Accepts images or indexes.
|
||||
|
||||
Args:
|
||||
img (str or list): Path to the image or a list of paths to the images.
|
||||
idx (int or list): Index of the image in the table or a list of indexes.
|
||||
labels (bool): Whether to plot the labels or not.
|
||||
limit (int): Number of results to return. Defaults to 25.
|
||||
|
||||
Returns:
|
||||
(PIL.Image): Image containing the plot.
|
||||
|
||||
Example:
|
||||
```python
|
||||
exp = Explorer()
|
||||
exp.create_embeddings_table()
|
||||
similar = exp.plot_similar(img='https://ultralytics.com/images/zidane.jpg')
|
||||
```
|
||||
"""
|
||||
similar = self.get_similar(img, idx, limit, return_type="arrow")
|
||||
if len(similar) == 0:
|
||||
LOGGER.info("No results found.")
|
||||
return None
|
||||
img = plot_query_result(similar, plot_labels=labels)
|
||||
return Image.fromarray(img)
|
||||
|
||||
def similarity_index(self, max_dist: float = 0.2, top_k: float = None, force: bool = False) -> DataFrame:
|
||||
"""
|
||||
Calculate the similarity index of all the images in the table. Here, the index will contain the data points that
|
||||
are max_dist or closer to the image in the embedding space at a given index.
|
||||
|
||||
Args:
|
||||
max_dist (float): maximum L2 distance between the embeddings to consider. Defaults to 0.2.
|
||||
top_k (float): Percentage of the closest data points to consider when counting. Used to apply limit when running
|
||||
vector search. Defaults: None.
|
||||
force (bool): Whether to overwrite the existing similarity index or not. Defaults to True.
|
||||
|
||||
Returns:
|
||||
(pandas.DataFrame): A dataframe containing the similarity index. Each row corresponds to an image, and columns
|
||||
include indices of similar images and their respective distances.
|
||||
|
||||
Example:
|
||||
```python
|
||||
exp = Explorer()
|
||||
exp.create_embeddings_table()
|
||||
sim_idx = exp.similarity_index()
|
||||
```
|
||||
"""
|
||||
if self.table is None:
|
||||
raise ValueError("Table is not created. Please create the table first.")
|
||||
sim_idx_table_name = f"{self.sim_idx_base_name}_thres_{max_dist}_top_{top_k}".lower()
|
||||
if sim_idx_table_name in self.connection.table_names() and not force:
|
||||
LOGGER.info("Similarity matrix already exists. Reusing it. Pass force=True to overwrite it.")
|
||||
return self.connection.open_table(sim_idx_table_name).to_pandas()
|
||||
|
||||
if top_k and not (1.0 >= top_k >= 0.0):
|
||||
raise ValueError(f"top_k must be between 0.0 and 1.0. Got {top_k}")
|
||||
if max_dist < 0.0:
|
||||
raise ValueError(f"max_dist must be greater than 0. Got {max_dist}")
|
||||
|
||||
top_k = int(top_k * len(self.table)) if top_k else len(self.table)
|
||||
top_k = max(top_k, 1)
|
||||
features = self.table.to_lance().to_table(columns=["vector", "im_file"]).to_pydict()
|
||||
im_files = features["im_file"]
|
||||
embeddings = features["vector"]
|
||||
|
||||
sim_table = self.connection.create_table(sim_idx_table_name, schema=get_sim_index_schema(), mode="overwrite")
|
||||
|
||||
def _yield_sim_idx():
|
||||
"""Generates a dataframe with similarity indices and distances for images."""
|
||||
for i in tqdm(range(len(embeddings))):
|
||||
sim_idx = self.table.search(embeddings[i]).limit(top_k).to_pandas().query(f"_distance <= {max_dist}")
|
||||
yield [
|
||||
{
|
||||
"idx": i,
|
||||
"im_file": im_files[i],
|
||||
"count": len(sim_idx),
|
||||
"sim_im_files": sim_idx["im_file"].tolist(),
|
||||
}
|
||||
]
|
||||
|
||||
sim_table.add(_yield_sim_idx())
|
||||
self.sim_index = sim_table
|
||||
return sim_table.to_pandas()
|
||||
|
||||
def plot_similarity_index(self, max_dist: float = 0.2, top_k: float = None, force: bool = False) -> Image:
|
||||
"""
|
||||
Plot the similarity index of all the images in the table. Here, the index will contain the data points that are
|
||||
max_dist or closer to the image in the embedding space at a given index.
|
||||
|
||||
Args:
|
||||
max_dist (float): maximum L2 distance between the embeddings to consider. Defaults to 0.2.
|
||||
top_k (float): Percentage of closest data points to consider when counting. Used to apply limit when
|
||||
running vector search. Defaults to 0.01.
|
||||
force (bool): Whether to overwrite the existing similarity index or not. Defaults to True.
|
||||
|
||||
Returns:
|
||||
(PIL.Image): Image containing the plot.
|
||||
|
||||
Example:
|
||||
```python
|
||||
exp = Explorer()
|
||||
exp.create_embeddings_table()
|
||||
|
||||
similarity_idx_plot = exp.plot_similarity_index()
|
||||
similarity_idx_plot.show() # view image preview
|
||||
similarity_idx_plot.save('path/to/save/similarity_index_plot.png') # save contents to file
|
||||
```
|
||||
"""
|
||||
sim_idx = self.similarity_index(max_dist=max_dist, top_k=top_k, force=force)
|
||||
sim_count = sim_idx["count"].tolist()
|
||||
sim_count = np.array(sim_count)
|
||||
|
||||
indices = np.arange(len(sim_count))
|
||||
|
||||
# Create the bar plot
|
||||
plt.bar(indices, sim_count)
|
||||
|
||||
# Customize the plot (optional)
|
||||
plt.xlabel("data idx")
|
||||
plt.ylabel("Count")
|
||||
plt.title("Similarity Count")
|
||||
buffer = BytesIO()
|
||||
plt.savefig(buffer, format="png")
|
||||
buffer.seek(0)
|
||||
|
||||
# Use Pillow to open the image from the buffer
|
||||
return Image.fromarray(np.array(Image.open(buffer)))
|
||||
|
||||
def _check_imgs_or_idxs(
|
||||
self, img: Union[str, np.ndarray, List[str], List[np.ndarray], None], idx: Union[None, int, List[int]]
|
||||
) -> List[np.ndarray]:
|
||||
if img is None and idx is None:
|
||||
raise ValueError("Either img or idx must be provided.")
|
||||
if img is not None and idx is not None:
|
||||
raise ValueError("Only one of img or idx must be provided.")
|
||||
if idx is not None:
|
||||
idx = idx if isinstance(idx, list) else [idx]
|
||||
img = self.table.to_lance().take(idx, columns=["im_file"]).to_pydict()["im_file"]
|
||||
|
||||
return img if isinstance(img, list) else [img]
|
||||
|
||||
def ask_ai(self, query):
|
||||
"""
|
||||
Ask AI a question.
|
||||
|
||||
Args:
|
||||
query (str): Question to ask.
|
||||
|
||||
Returns:
|
||||
(pandas.DataFrame): A dataframe containing filtered results to the SQL query.
|
||||
|
||||
Example:
|
||||
```python
|
||||
exp = Explorer()
|
||||
exp.create_embeddings_table()
|
||||
answer = exp.ask_ai('Show images with 1 person and 2 dogs')
|
||||
```
|
||||
"""
|
||||
result = prompt_sql_query(query)
|
||||
try:
|
||||
df = self.sql_query(result)
|
||||
except Exception as e:
|
||||
LOGGER.error("AI generated query is not valid. Please try again with a different prompt")
|
||||
LOGGER.error(e)
|
||||
return None
|
||||
return df
|
||||
|
||||
def visualize(self, result):
|
||||
"""
|
||||
Visualize the results of a query. TODO.
|
||||
|
||||
Args:
|
||||
result (pyarrow.Table): Table containing the results of a query.
|
||||
"""
|
||||
pass
|
||||
|
||||
def generate_report(self, result):
|
||||
"""
|
||||
Generate a report of the dataset.
|
||||
|
||||
TODO
|
||||
"""
|
||||
pass
|
1
ultralytics/data/explorer/gui/__init__.py
Normal file
1
ultralytics/data/explorer/gui/__init__.py
Normal file
@ -0,0 +1 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
268
ultralytics/data/explorer/gui/dash.py
Normal file
268
ultralytics/data/explorer/gui/dash.py
Normal file
@ -0,0 +1,268 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
import time
|
||||
from threading import Thread
|
||||
|
||||
import pandas as pd
|
||||
|
||||
from ultralytics import Explorer
|
||||
from ultralytics.utils import ROOT, SETTINGS
|
||||
from ultralytics.utils.checks import check_requirements
|
||||
|
||||
check_requirements(("streamlit>=1.29.0", "streamlit-select>=0.3"))
|
||||
|
||||
import streamlit as st
|
||||
from streamlit_select import image_select
|
||||
|
||||
|
||||
def _get_explorer():
|
||||
"""Initializes and returns an instance of the Explorer class."""
|
||||
exp = Explorer(data=st.session_state.get("dataset"), model=st.session_state.get("model"))
|
||||
thread = Thread(
|
||||
target=exp.create_embeddings_table, kwargs={"force": st.session_state.get("force_recreate_embeddings")}
|
||||
)
|
||||
thread.start()
|
||||
progress_bar = st.progress(0, text="Creating embeddings table...")
|
||||
while exp.progress < 1:
|
||||
time.sleep(0.1)
|
||||
progress_bar.progress(exp.progress, text=f"Progress: {exp.progress * 100}%")
|
||||
thread.join()
|
||||
st.session_state["explorer"] = exp
|
||||
progress_bar.empty()
|
||||
|
||||
|
||||
def init_explorer_form():
|
||||
"""Initializes an Explorer instance and creates embeddings table with progress tracking."""
|
||||
datasets = ROOT / "cfg" / "datasets"
|
||||
ds = [d.name for d in datasets.glob("*.yaml")]
|
||||
models = [
|
||||
"yolov8n.pt",
|
||||
"yolov8s.pt",
|
||||
"yolov8m.pt",
|
||||
"yolov8l.pt",
|
||||
"yolov8x.pt",
|
||||
"yolov8n-seg.pt",
|
||||
"yolov8s-seg.pt",
|
||||
"yolov8m-seg.pt",
|
||||
"yolov8l-seg.pt",
|
||||
"yolov8x-seg.pt",
|
||||
"yolov8n-pose.pt",
|
||||
"yolov8s-pose.pt",
|
||||
"yolov8m-pose.pt",
|
||||
"yolov8l-pose.pt",
|
||||
"yolov8x-pose.pt",
|
||||
]
|
||||
with st.form(key="explorer_init_form"):
|
||||
col1, col2 = st.columns(2)
|
||||
with col1:
|
||||
st.selectbox("Select dataset", ds, key="dataset", index=ds.index("coco128.yaml"))
|
||||
with col2:
|
||||
st.selectbox("Select model", models, key="model")
|
||||
st.checkbox("Force recreate embeddings", key="force_recreate_embeddings")
|
||||
|
||||
st.form_submit_button("Explore", on_click=_get_explorer)
|
||||
|
||||
|
||||
def query_form():
|
||||
"""Sets up a form in Streamlit to initialize Explorer with dataset and model selection."""
|
||||
with st.form("query_form"):
|
||||
col1, col2 = st.columns([0.8, 0.2])
|
||||
with col1:
|
||||
st.text_input(
|
||||
"Query",
|
||||
"WHERE labels LIKE '%person%' AND labels LIKE '%dog%'",
|
||||
label_visibility="collapsed",
|
||||
key="query",
|
||||
)
|
||||
with col2:
|
||||
st.form_submit_button("Query", on_click=run_sql_query)
|
||||
|
||||
|
||||
def ai_query_form():
|
||||
"""Sets up a Streamlit form for user input to initialize Explorer with dataset and model selection."""
|
||||
with st.form("ai_query_form"):
|
||||
col1, col2 = st.columns([0.8, 0.2])
|
||||
with col1:
|
||||
st.text_input("Query", "Show images with 1 person and 1 dog", label_visibility="collapsed", key="ai_query")
|
||||
with col2:
|
||||
st.form_submit_button("Ask AI", on_click=run_ai_query)
|
||||
|
||||
|
||||
def find_similar_imgs(imgs):
|
||||
"""Initializes a Streamlit form for AI-based image querying with custom input."""
|
||||
exp = st.session_state["explorer"]
|
||||
similar = exp.get_similar(img=imgs, limit=st.session_state.get("limit"), return_type="arrow")
|
||||
paths = similar.to_pydict()["im_file"]
|
||||
st.session_state["imgs"] = paths
|
||||
st.session_state["res"] = similar
|
||||
|
||||
|
||||
def similarity_form(selected_imgs):
|
||||
"""Initializes a form for AI-based image querying with custom input in Streamlit."""
|
||||
st.write("Similarity Search")
|
||||
with st.form("similarity_form"):
|
||||
subcol1, subcol2 = st.columns([1, 1])
|
||||
with subcol1:
|
||||
st.number_input(
|
||||
"limit", min_value=None, max_value=None, value=25, label_visibility="collapsed", key="limit"
|
||||
)
|
||||
|
||||
with subcol2:
|
||||
disabled = not len(selected_imgs)
|
||||
st.write("Selected: ", len(selected_imgs))
|
||||
st.form_submit_button(
|
||||
"Search",
|
||||
disabled=disabled,
|
||||
on_click=find_similar_imgs,
|
||||
args=(selected_imgs,),
|
||||
)
|
||||
if disabled:
|
||||
st.error("Select at least one image to search.")
|
||||
|
||||
|
||||
# def persist_reset_form():
|
||||
# with st.form("persist_reset"):
|
||||
# col1, col2 = st.columns([1, 1])
|
||||
# with col1:
|
||||
# st.form_submit_button("Reset", on_click=reset)
|
||||
#
|
||||
# with col2:
|
||||
# st.form_submit_button("Persist", on_click=update_state, args=("PERSISTING", True))
|
||||
|
||||
|
||||
def run_sql_query():
|
||||
"""Executes an SQL query and returns the results."""
|
||||
st.session_state["error"] = None
|
||||
query = st.session_state.get("query")
|
||||
if query.rstrip().lstrip():
|
||||
exp = st.session_state["explorer"]
|
||||
res = exp.sql_query(query, return_type="arrow")
|
||||
st.session_state["imgs"] = res.to_pydict()["im_file"]
|
||||
st.session_state["res"] = res
|
||||
|
||||
|
||||
def run_ai_query():
|
||||
"""Execute SQL query and update session state with query results."""
|
||||
if not SETTINGS["openai_api_key"]:
|
||||
st.session_state["error"] = (
|
||||
'OpenAI API key not found in settings. Please run yolo settings openai_api_key="..."'
|
||||
)
|
||||
return
|
||||
st.session_state["error"] = None
|
||||
query = st.session_state.get("ai_query")
|
||||
if query.rstrip().lstrip():
|
||||
exp = st.session_state["explorer"]
|
||||
res = exp.ask_ai(query)
|
||||
if not isinstance(res, pd.DataFrame) or res.empty:
|
||||
st.session_state["error"] = "No results found using AI generated query. Try another query or rerun it."
|
||||
return
|
||||
st.session_state["imgs"] = res["im_file"].to_list()
|
||||
st.session_state["res"] = res
|
||||
|
||||
|
||||
def reset_explorer():
|
||||
"""Resets the explorer to its initial state by clearing session variables."""
|
||||
st.session_state["explorer"] = None
|
||||
st.session_state["imgs"] = None
|
||||
st.session_state["error"] = None
|
||||
|
||||
|
||||
def utralytics_explorer_docs_callback():
|
||||
"""Resets the explorer to its initial state by clearing session variables."""
|
||||
with st.container(border=True):
|
||||
st.image(
|
||||
"https://raw.githubusercontent.com/ultralytics/assets/main/logo/Ultralytics_Logotype_Original.svg",
|
||||
width=100,
|
||||
)
|
||||
st.markdown(
|
||||
"<p>This demo is built using Ultralytics Explorer API. Visit <a href='https://docs.ultralytics.com/datasets/explorer/'>API docs</a> to try examples & learn more</p>",
|
||||
unsafe_allow_html=True,
|
||||
help=None,
|
||||
)
|
||||
st.link_button("Ultrlaytics Explorer API", "https://docs.ultralytics.com/datasets/explorer/")
|
||||
|
||||
|
||||
def layout():
|
||||
"""Resets explorer session variables and provides documentation with a link to API docs."""
|
||||
st.set_page_config(layout="wide", initial_sidebar_state="collapsed")
|
||||
st.markdown("<h1 style='text-align: center;'>Ultralytics Explorer Demo</h1>", unsafe_allow_html=True)
|
||||
|
||||
if st.session_state.get("explorer") is None:
|
||||
init_explorer_form()
|
||||
return
|
||||
|
||||
st.button(":arrow_backward: Select Dataset", on_click=reset_explorer)
|
||||
exp = st.session_state.get("explorer")
|
||||
col1, col2 = st.columns([0.75, 0.25], gap="small")
|
||||
imgs = []
|
||||
if st.session_state.get("error"):
|
||||
st.error(st.session_state["error"])
|
||||
else:
|
||||
if st.session_state.get("imgs"):
|
||||
imgs = st.session_state.get("imgs")
|
||||
else:
|
||||
imgs = exp.table.to_lance().to_table(columns=["im_file"]).to_pydict()["im_file"]
|
||||
st.session_state["res"] = exp.table.to_arrow()
|
||||
total_imgs, selected_imgs = len(imgs), []
|
||||
with col1:
|
||||
subcol1, subcol2, subcol3, subcol4, subcol5 = st.columns(5)
|
||||
with subcol1:
|
||||
st.write("Max Images Displayed:")
|
||||
with subcol2:
|
||||
num = st.number_input(
|
||||
"Max Images Displayed",
|
||||
min_value=0,
|
||||
max_value=total_imgs,
|
||||
value=min(500, total_imgs),
|
||||
key="num_imgs_displayed",
|
||||
label_visibility="collapsed",
|
||||
)
|
||||
with subcol3:
|
||||
st.write("Start Index:")
|
||||
with subcol4:
|
||||
start_idx = st.number_input(
|
||||
"Start Index",
|
||||
min_value=0,
|
||||
max_value=total_imgs,
|
||||
value=0,
|
||||
key="start_index",
|
||||
label_visibility="collapsed",
|
||||
)
|
||||
with subcol5:
|
||||
reset = st.button("Reset", use_container_width=False, key="reset")
|
||||
if reset:
|
||||
st.session_state["imgs"] = None
|
||||
st.experimental_rerun()
|
||||
|
||||
query_form()
|
||||
ai_query_form()
|
||||
if total_imgs:
|
||||
labels, boxes, masks, kpts, classes = None, None, None, None, None
|
||||
task = exp.model.task
|
||||
if st.session_state.get("display_labels"):
|
||||
labels = st.session_state.get("res").to_pydict()["labels"][start_idx : start_idx + num]
|
||||
boxes = st.session_state.get("res").to_pydict()["bboxes"][start_idx : start_idx + num]
|
||||
masks = st.session_state.get("res").to_pydict()["masks"][start_idx : start_idx + num]
|
||||
kpts = st.session_state.get("res").to_pydict()["keypoints"][start_idx : start_idx + num]
|
||||
classes = st.session_state.get("res").to_pydict()["cls"][start_idx : start_idx + num]
|
||||
imgs_displayed = imgs[start_idx : start_idx + num]
|
||||
selected_imgs = image_select(
|
||||
f"Total samples: {total_imgs}",
|
||||
images=imgs_displayed,
|
||||
use_container_width=False,
|
||||
# indices=[i for i in range(num)] if select_all else None,
|
||||
labels=labels,
|
||||
classes=classes,
|
||||
bboxes=boxes,
|
||||
masks=masks if task == "segment" else None,
|
||||
kpts=kpts if task == "pose" else None,
|
||||
)
|
||||
|
||||
with col2:
|
||||
similarity_form(selected_imgs)
|
||||
display_labels = st.checkbox("Labels", value=False, key="display_labels")
|
||||
utralytics_explorer_docs_callback()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
layout()
|
166
ultralytics/data/explorer/utils.py
Normal file
166
ultralytics/data/explorer/utils.py
Normal file
@ -0,0 +1,166 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
import getpass
|
||||
from typing import List
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
from ultralytics.data.augment import LetterBox
|
||||
from ultralytics.utils import LOGGER as logger
|
||||
from ultralytics.utils import SETTINGS
|
||||
from ultralytics.utils.checks import check_requirements
|
||||
from ultralytics.utils.ops import xyxy2xywh
|
||||
from ultralytics.utils.plotting import plot_images
|
||||
|
||||
|
||||
def get_table_schema(vector_size):
|
||||
"""Extracts and returns the schema of a database table."""
|
||||
from lancedb.pydantic import LanceModel, Vector
|
||||
|
||||
class Schema(LanceModel):
|
||||
im_file: str
|
||||
labels: List[str]
|
||||
cls: List[int]
|
||||
bboxes: List[List[float]]
|
||||
masks: List[List[List[int]]]
|
||||
keypoints: List[List[List[float]]]
|
||||
vector: Vector(vector_size)
|
||||
|
||||
return Schema
|
||||
|
||||
|
||||
def get_sim_index_schema():
|
||||
"""Returns a LanceModel schema for a database table with specified vector size."""
|
||||
from lancedb.pydantic import LanceModel
|
||||
|
||||
class Schema(LanceModel):
|
||||
idx: int
|
||||
im_file: str
|
||||
count: int
|
||||
sim_im_files: List[str]
|
||||
|
||||
return Schema
|
||||
|
||||
|
||||
def sanitize_batch(batch, dataset_info):
|
||||
"""Sanitizes input batch for inference, ensuring correct format and dimensions."""
|
||||
batch["cls"] = batch["cls"].flatten().int().tolist()
|
||||
box_cls_pair = sorted(zip(batch["bboxes"].tolist(), batch["cls"]), key=lambda x: x[1])
|
||||
batch["bboxes"] = [box for box, _ in box_cls_pair]
|
||||
batch["cls"] = [cls for _, cls in box_cls_pair]
|
||||
batch["labels"] = [dataset_info["names"][i] for i in batch["cls"]]
|
||||
batch["masks"] = batch["masks"].tolist() if "masks" in batch else [[[]]]
|
||||
batch["keypoints"] = batch["keypoints"].tolist() if "keypoints" in batch else [[[]]]
|
||||
return batch
|
||||
|
||||
|
||||
def plot_query_result(similar_set, plot_labels=True):
|
||||
"""
|
||||
Plot images from the similar set.
|
||||
|
||||
Args:
|
||||
similar_set (list): Pyarrow or pandas object containing the similar data points
|
||||
plot_labels (bool): Whether to plot labels or not
|
||||
"""
|
||||
similar_set = (
|
||||
similar_set.to_dict(orient="list") if isinstance(similar_set, pd.DataFrame) else similar_set.to_pydict()
|
||||
)
|
||||
empty_masks = [[[]]]
|
||||
empty_boxes = [[]]
|
||||
images = similar_set.get("im_file", [])
|
||||
bboxes = similar_set.get("bboxes", []) if similar_set.get("bboxes") is not empty_boxes else []
|
||||
masks = similar_set.get("masks") if similar_set.get("masks")[0] != empty_masks else []
|
||||
kpts = similar_set.get("keypoints") if similar_set.get("keypoints")[0] != empty_masks else []
|
||||
cls = similar_set.get("cls", [])
|
||||
|
||||
plot_size = 640
|
||||
imgs, batch_idx, plot_boxes, plot_masks, plot_kpts = [], [], [], [], []
|
||||
for i, imf in enumerate(images):
|
||||
im = cv2.imread(imf)
|
||||
im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
|
||||
h, w = im.shape[:2]
|
||||
r = min(plot_size / h, plot_size / w)
|
||||
imgs.append(LetterBox(plot_size, center=False)(image=im).transpose(2, 0, 1))
|
||||
if plot_labels:
|
||||
if len(bboxes) > i and len(bboxes[i]) > 0:
|
||||
box = np.array(bboxes[i], dtype=np.float32)
|
||||
box[:, [0, 2]] *= r
|
||||
box[:, [1, 3]] *= r
|
||||
plot_boxes.append(box)
|
||||
if len(masks) > i and len(masks[i]) > 0:
|
||||
mask = np.array(masks[i], dtype=np.uint8)[0]
|
||||
plot_masks.append(LetterBox(plot_size, center=False)(image=mask))
|
||||
if len(kpts) > i and kpts[i] is not None:
|
||||
kpt = np.array(kpts[i], dtype=np.float32)
|
||||
kpt[:, :, :2] *= r
|
||||
plot_kpts.append(kpt)
|
||||
batch_idx.append(np.ones(len(np.array(bboxes[i], dtype=np.float32))) * i)
|
||||
imgs = np.stack(imgs, axis=0)
|
||||
masks = np.stack(plot_masks, axis=0) if plot_masks else np.zeros(0, dtype=np.uint8)
|
||||
kpts = np.concatenate(plot_kpts, axis=0) if plot_kpts else np.zeros((0, 51), dtype=np.float32)
|
||||
boxes = xyxy2xywh(np.concatenate(plot_boxes, axis=0)) if plot_boxes else np.zeros(0, dtype=np.float32)
|
||||
batch_idx = np.concatenate(batch_idx, axis=0)
|
||||
cls = np.concatenate([np.array(c, dtype=np.int32) for c in cls], axis=0)
|
||||
|
||||
return plot_images(
|
||||
imgs, batch_idx, cls, bboxes=boxes, masks=masks, kpts=kpts, max_subplots=len(images), save=False, threaded=False
|
||||
)
|
||||
|
||||
|
||||
def prompt_sql_query(query):
|
||||
"""Plots images with optional labels from a similar data set."""
|
||||
check_requirements("openai>=1.6.1")
|
||||
from openai import OpenAI
|
||||
|
||||
if not SETTINGS["openai_api_key"]:
|
||||
logger.warning("OpenAI API key not found in settings. Please enter your API key below.")
|
||||
openai_api_key = getpass.getpass("OpenAI API key: ")
|
||||
SETTINGS.update({"openai_api_key": openai_api_key})
|
||||
openai = OpenAI(api_key=SETTINGS["openai_api_key"])
|
||||
|
||||
messages = [
|
||||
{
|
||||
"role": "system",
|
||||
"content": """
|
||||
You are a helpful data scientist proficient in SQL. You need to output exactly one SQL query based on
|
||||
the following schema and a user request. You only need to output the format with fixed selection
|
||||
statement that selects everything from "'table'", like `SELECT * from 'table'`
|
||||
|
||||
Schema:
|
||||
im_file: string not null
|
||||
labels: list<item: string> not null
|
||||
child 0, item: string
|
||||
cls: list<item: int64> not null
|
||||
child 0, item: int64
|
||||
bboxes: list<item: list<item: double>> not null
|
||||
child 0, item: list<item: double>
|
||||
child 0, item: double
|
||||
masks: list<item: list<item: list<item: int64>>> not null
|
||||
child 0, item: list<item: list<item: int64>>
|
||||
child 0, item: list<item: int64>
|
||||
child 0, item: int64
|
||||
keypoints: list<item: list<item: list<item: double>>> not null
|
||||
child 0, item: list<item: list<item: double>>
|
||||
child 0, item: list<item: double>
|
||||
child 0, item: double
|
||||
vector: fixed_size_list<item: float>[256] not null
|
||||
child 0, item: float
|
||||
|
||||
Some details about the schema:
|
||||
- the "labels" column contains the string values like 'person' and 'dog' for the respective objects
|
||||
in each image
|
||||
- the "cls" column contains the integer values on these classes that map them the labels
|
||||
|
||||
Example of a correct query:
|
||||
request - Get all data points that contain 2 or more people and at least one dog
|
||||
correct query-
|
||||
SELECT * FROM 'table' WHERE ARRAY_LENGTH(cls) >= 2 AND ARRAY_LENGTH(FILTER(labels, x -> x = 'person')) >= 2 AND ARRAY_LENGTH(FILTER(labels, x -> x = 'dog')) >= 1;
|
||||
""",
|
||||
},
|
||||
{"role": "user", "content": f"{query}"},
|
||||
]
|
||||
|
||||
response = openai.chat.completions.create(model="gpt-3.5-turbo", messages=messages)
|
||||
return response.choices[0].message.content
|
Reference in New Issue
Block a user