This commit is contained in:
lee
2025-06-18 14:35:43 +08:00
commit e474ab5f9f
529 changed files with 80523 additions and 0 deletions

View File

@ -0,0 +1,123 @@
# Regions Counting Using YOLOv8 (Inference on Video)
- Region counting is a method employed to tally the objects within a specified area, allowing for more sophisticated analyses when multiple regions are considered. These regions can be adjusted interactively using a Left Mouse Click, and the counting process occurs in real time.
- Regions can be adjusted to suit the user's preferences and requirements.
<div>
<p align="center">
<img src="https://github.com/RizwanMunawar/ultralytics/assets/62513924/5ab3bbd7-fd12-4849-928e-5f294d6c3fcf" width="45%" alt="YOLOv8 region counting visual 1">
<img src="https://github.com/RizwanMunawar/ultralytics/assets/62513924/e7c1aea7-474d-4d78-8d48-b50854ffe1ca" width="45%" alt="YOLOv8 region counting visual 2">
</p>
</div>
## Table of Contents
- [Step 1: Install the Required Libraries](#step-1-install-the-required-libraries)
- [Step 2: Run the Region Counting Using Ultralytics YOLOv8](#step-2-run-the-region-counting-using-ultralytics-yolov8)
- [Usage Options](#usage-options)
- [FAQ](#faq)
## Step 1: Install the Required Libraries
Clone the repository, install dependencies and `cd` to this local directory for commands in Step 2.
```bash
# Clone ultralytics repo
git clone https://github.com/ultralytics/ultralytics
# cd to local directory
cd ultralytics/examples/YOLOv8-Region-Counter
```
## Step 2: Run the Region Counting Using Ultralytics YOLOv8
Here are the basic commands for running the inference:
### Note
After the video begins playing, you can freely move the region anywhere within the video by simply clicking and dragging using the left mouse button.
```bash
# If you want to save results
python yolov8_region_counter.py --source "path/to/video.mp4" --save-img --view-img
# If you want to run model on CPU
python yolov8_region_counter.py --source "path/to/video.mp4" --save-img --view-img --device cpu
# If you want to change model file
python yolov8_region_counter.py --source "path/to/video.mp4" --save-img --weights "path/to/model.pt"
# If you want to detect specific class (first class and third class)
python yolov8_region_counter.py --source "path/to/video.mp4" --classes 0 2 --weights "path/to/model.pt"
# If you dont want to save results
python yolov8_region_counter.py --source "path/to/video.mp4" --view-img
```
## Usage Options
- `--source`: Specifies the path to the video file you want to run inference on.
- `--device`: Specifies the device `cpu` or `0`
- `--save-img`: Flag to save the detection results as images.
- `--weights`: Specifies a different YOLOv8 model file (e.g., `yolov8n.pt`, `yolov8s.pt`, `yolov8m.pt`, `yolov8l.pt`, `yolov8x.pt`).
- `--classes`: Specifies the class to be detected
- `--line-thickness`: Specifies the bounding box thickness
- `--region-thickness`: Specifies the region boxes thickness
- `--track-thickness`: Specifies the track line thickness
## FAQ
**1. What Does Region Counting Involve?**
Region counting is a computational method utilized to ascertain the quantity of objects within a specific area in recorded video or real-time streams. This technique finds frequent application in image processing, computer vision, and pattern recognition, facilitating the analysis and segmentation of objects or features based on their spatial relationships.
**2. Is Friendly Region Plotting Supported by the Region Counter?**
The Region Counter offers the capability to create regions in various formats, such as polygons and rectangles. You have the flexibility to modify region attributes, including coordinates, colors, and other details, as demonstrated in the following code:
```python
from shapely.geometry import Polygon
counting_regions = [
{
"name": "YOLOv8 Polygon Region",
"polygon": Polygon(
[(50, 80), (250, 20), (450, 80), (400, 350), (100, 350)]
), # Polygon with five points (Pentagon)
"counts": 0,
"dragging": False,
"region_color": (255, 42, 4), # BGR Value
"text_color": (255, 255, 255), # Region Text Color
},
{
"name": "YOLOv8 Rectangle Region",
"polygon": Polygon(
[(200, 250), (440, 250), (440, 550), (200, 550)]
), # Rectangle with four points
"counts": 0,
"dragging": False,
"region_color": (37, 255, 225), # BGR Value
"text_color": (0, 0, 0), # Region Text Color
},
]
```
**3. Why Combine Region Counting with YOLOv8?**
YOLOv8 specializes in the detection and tracking of objects in video streams. Region counting complements this by enabling object counting within designated areas, making it a valuable application of YOLOv8.
**4. How Can I Troubleshoot Issues?**
To gain more insights during inference, you can include the `--debug` flag in your command:
```bash
python yolov8_region_counter.py --source "path to video file" --debug
```
**5. Can I Employ Other YOLO Versions?**
Certainly, you have the flexibility to specify different YOLO model weights using the `--weights` option.
**6. Where Can I Access Additional Information?**
For a comprehensive guide on using YOLOv8 with Object Tracking, please refer to [Multi-Object Tracking with Ultralytics YOLO](https://docs.ultralytics.com/modes/track/).

View File

@ -0,0 +1,251 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
import argparse
from collections import defaultdict
from pathlib import Path
import cv2
import numpy as np
from shapely.geometry import Polygon
from shapely.geometry.point import Point
from ultralytics import YOLO
from ultralytics.utils.files import increment_path
from ultralytics.utils.plotting import Annotator, colors
track_history = defaultdict(list)
current_region = None
counting_regions = [
{
"name": "YOLOv8 Polygon Region",
"polygon": Polygon([(50, 80), (250, 20), (450, 80), (400, 350), (100, 350)]), # Polygon points
"counts": 0,
"dragging": False,
"region_color": (255, 42, 4), # BGR Value
"text_color": (255, 255, 255), # Region Text Color
},
{
"name": "YOLOv8 Rectangle Region",
"polygon": Polygon([(200, 250), (440, 250), (440, 550), (200, 550)]), # Polygon points
"counts": 0,
"dragging": False,
"region_color": (37, 255, 225), # BGR Value
"text_color": (0, 0, 0), # Region Text Color
},
]
def mouse_callback(event, x, y, flags, param):
"""
Handles mouse events for region manipulation.
Parameters:
event (int): The mouse event type (e.g., cv2.EVENT_LBUTTONDOWN).
x (int): The x-coordinate of the mouse pointer.
y (int): The y-coordinate of the mouse pointer.
flags (int): Additional flags passed by OpenCV.
param: Additional parameters passed to the callback (not used in this function).
Global Variables:
current_region (dict): A dictionary representing the current selected region.
Mouse Events:
- LBUTTONDOWN: Initiates dragging for the region containing the clicked point.
- MOUSEMOVE: Moves the selected region if dragging is active.
- LBUTTONUP: Ends dragging for the selected region.
Notes:
- This function is intended to be used as a callback for OpenCV mouse events.
- Requires the existence of the 'counting_regions' list and the 'Polygon' class.
Example:
>>> cv2.setMouseCallback(window_name, mouse_callback)
"""
global current_region
# Mouse left button down event
if event == cv2.EVENT_LBUTTONDOWN:
for region in counting_regions:
if region["polygon"].contains(Point((x, y))):
current_region = region
current_region["dragging"] = True
current_region["offset_x"] = x
current_region["offset_y"] = y
# Mouse move event
elif event == cv2.EVENT_MOUSEMOVE:
if current_region is not None and current_region["dragging"]:
dx = x - current_region["offset_x"]
dy = y - current_region["offset_y"]
current_region["polygon"] = Polygon(
[(p[0] + dx, p[1] + dy) for p in current_region["polygon"].exterior.coords]
)
current_region["offset_x"] = x
current_region["offset_y"] = y
# Mouse left button up event
elif event == cv2.EVENT_LBUTTONUP:
if current_region is not None and current_region["dragging"]:
current_region["dragging"] = False
def run(
weights="yolov8n.pt",
source=None,
device="cpu",
view_img=False,
save_img=False,
exist_ok=False,
classes=None,
line_thickness=2,
track_thickness=2,
region_thickness=2,
):
"""
Run Region counting on a video using YOLOv8 and ByteTrack.
Supports movable region for real time counting inside specific area.
Supports multiple regions counting.
Regions can be Polygons or rectangle in shape
Args:
weights (str): Model weights path.
source (str): Video file path.
device (str): processing device cpu, 0, 1
view_img (bool): Show results.
save_img (bool): Save results.
exist_ok (bool): Overwrite existing files.
classes (list): classes to detect and track
line_thickness (int): Bounding box thickness.
track_thickness (int): Tracking line thickness
region_thickness (int): Region thickness.
"""
vid_frame_count = 0
# Check source path
if not Path(source).exists():
raise FileNotFoundError(f"Source path '{source}' does not exist.")
# Setup Model
model = YOLO(f"{weights}")
model.to("cuda") if device == "0" else model.to("cpu")
# Extract classes names
names = model.model.names
# Video setup
videocapture = cv2.VideoCapture(source)
frame_width, frame_height = int(videocapture.get(3)), int(videocapture.get(4))
fps, fourcc = int(videocapture.get(5)), cv2.VideoWriter_fourcc(*"mp4v")
# Output setup
save_dir = increment_path(Path("ultralytics_rc_output") / "exp", exist_ok)
save_dir.mkdir(parents=True, exist_ok=True)
video_writer = cv2.VideoWriter(str(save_dir / f"{Path(source).stem}.mp4"), fourcc, fps, (frame_width, frame_height))
# Iterate over video frames
while videocapture.isOpened():
success, frame = videocapture.read()
if not success:
break
vid_frame_count += 1
# Extract the results
results = model.track(frame, persist=True, classes=classes)
if results[0].boxes.id is not None:
boxes = results[0].boxes.xyxy.cpu()
track_ids = results[0].boxes.id.int().cpu().tolist()
clss = results[0].boxes.cls.cpu().tolist()
annotator = Annotator(frame, line_width=line_thickness, example=str(names))
for box, track_id, cls in zip(boxes, track_ids, clss):
annotator.box_label(box, str(names[cls]), color=colors(cls, True))
bbox_center = (box[0] + box[2]) / 2, (box[1] + box[3]) / 2 # Bbox center
track = track_history[track_id] # Tracking Lines plot
track.append((float(bbox_center[0]), float(bbox_center[1])))
if len(track) > 30:
track.pop(0)
points = np.hstack(track).astype(np.int32).reshape((-1, 1, 2))
cv2.polylines(frame, [points], isClosed=False, color=colors(cls, True), thickness=track_thickness)
# Check if detection inside region
for region in counting_regions:
if region["polygon"].contains(Point((bbox_center[0], bbox_center[1]))):
region["counts"] += 1
# Draw regions (Polygons/Rectangles)
for region in counting_regions:
region_label = str(region["counts"])
region_color = region["region_color"]
region_text_color = region["text_color"]
polygon_coords = np.array(region["polygon"].exterior.coords, dtype=np.int32)
centroid_x, centroid_y = int(region["polygon"].centroid.x), int(region["polygon"].centroid.y)
text_size, _ = cv2.getTextSize(
region_label, cv2.FONT_HERSHEY_SIMPLEX, fontScale=0.7, thickness=line_thickness
)
text_x = centroid_x - text_size[0] // 2
text_y = centroid_y + text_size[1] // 2
cv2.rectangle(
frame,
(text_x - 5, text_y - text_size[1] - 5),
(text_x + text_size[0] + 5, text_y + 5),
region_color,
-1,
)
cv2.putText(
frame, region_label, (text_x, text_y), cv2.FONT_HERSHEY_SIMPLEX, 0.7, region_text_color, line_thickness
)
cv2.polylines(frame, [polygon_coords], isClosed=True, color=region_color, thickness=region_thickness)
if view_img:
if vid_frame_count == 1:
cv2.namedWindow("Ultralytics YOLOv8 Region Counter Movable")
cv2.setMouseCallback("Ultralytics YOLOv8 Region Counter Movable", mouse_callback)
cv2.imshow("Ultralytics YOLOv8 Region Counter Movable", frame)
if save_img:
video_writer.write(frame)
for region in counting_regions: # Reinitialize count for each region
region["counts"] = 0
if cv2.waitKey(1) & 0xFF == ord("q"):
break
del vid_frame_count
video_writer.release()
videocapture.release()
cv2.destroyAllWindows()
def parse_opt():
"""Parse command line arguments."""
parser = argparse.ArgumentParser()
parser.add_argument("--weights", type=str, default="yolov8n.pt", help="initial weights path")
parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
parser.add_argument("--source", type=str, required=True, help="video file path")
parser.add_argument("--view-img", action="store_true", help="show results")
parser.add_argument("--save-img", action="store_true", help="save results")
parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")
parser.add_argument("--classes", nargs="+", type=int, help="filter by class: --classes 0, or --classes 0 2 3")
parser.add_argument("--line-thickness", type=int, default=2, help="bounding box thickness")
parser.add_argument("--track-thickness", type=int, default=2, help="Tracking line thickness")
parser.add_argument("--region-thickness", type=int, default=4, help="Region thickness")
return parser.parse_args()
def main(opt):
"""Main function."""
run(**vars(opt))
if __name__ == "__main__":
opt = parse_opt()
main(opt)