mirror of
https://gitee.com/nanjing-yimao-information/ieemoo-ai-gift.git
synced 2025-08-23 07:30:25 +00:00
update
This commit is contained in:
65
examples/YOLOv8-OpenCV-int8-tflite-Python/README.md
Normal file
65
examples/YOLOv8-OpenCV-int8-tflite-Python/README.md
Normal file
@ -0,0 +1,65 @@
|
||||
# YOLOv8 - Int8-TFLite Runtime
|
||||
|
||||
Welcome to the YOLOv8 Int8 TFLite Runtime for efficient and optimized object detection project. This README provides comprehensive instructions for installing and using our YOLOv8 implementation.
|
||||
|
||||
## Installation
|
||||
|
||||
Ensure a smooth setup by following these steps to install necessary dependencies.
|
||||
|
||||
### Installing Required Dependencies
|
||||
|
||||
Install all required dependencies with this simple command:
|
||||
|
||||
```bash
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
### Installing `tflite-runtime`
|
||||
|
||||
To load TFLite models, install the `tflite-runtime` package using:
|
||||
|
||||
```bash
|
||||
pip install tflite-runtime
|
||||
```
|
||||
|
||||
### Installing `tensorflow-gpu` (For NVIDIA GPU Users)
|
||||
|
||||
Leverage GPU acceleration with NVIDIA GPUs by installing `tensorflow-gpu`:
|
||||
|
||||
```bash
|
||||
pip install tensorflow-gpu
|
||||
```
|
||||
|
||||
**Note:** Ensure you have compatible GPU drivers installed on your system.
|
||||
|
||||
### Installing `tensorflow` (CPU Version)
|
||||
|
||||
For CPU usage or non-NVIDIA GPUs, install TensorFlow with:
|
||||
|
||||
```bash
|
||||
pip install tensorflow
|
||||
```
|
||||
|
||||
## Usage
|
||||
|
||||
Follow these instructions to run YOLOv8 after successful installation.
|
||||
|
||||
Convert the YOLOv8 model to Int8 TFLite format:
|
||||
|
||||
```bash
|
||||
yolo export model=yolov8n.pt imgsz=640 format=tflite int8
|
||||
```
|
||||
|
||||
Locate the Int8 TFLite model in `yolov8n_saved_model`. Choose `best_full_integer_quant` or verify quantization at [Netron](https://netron.app/). Then, execute the following in your terminal:
|
||||
|
||||
```bash
|
||||
python main.py --model yolov8n_full_integer_quant.tflite --img image.jpg --conf-thres 0.5 --iou-thres 0.5
|
||||
```
|
||||
|
||||
Replace `best_full_integer_quant.tflite` with your model file's path, `image.jpg` with your input image, and adjust the confidence (conf-thres) and IoU thresholds (iou-thres) as necessary.
|
||||
|
||||
### Output
|
||||
|
||||
The output is displayed as annotated images, showcasing the model's detection capabilities:
|
||||
|
||||

|
Reference in New Issue
Block a user