mirror of
https://gitee.com/nanjing-yimao-information/ieemoo-ai-gift.git
synced 2025-08-23 15:40:25 +00:00
update
This commit is contained in:
94
docs/en/yolov5/environments/azureml_quickstart_tutorial.md
Normal file
94
docs/en/yolov5/environments/azureml_quickstart_tutorial.md
Normal file
@ -0,0 +1,94 @@
|
||||
---
|
||||
comments: true
|
||||
description: Azure Machine Learning YOLOv5 quickstart
|
||||
keywords: Ultralytics, YOLO, Deep Learning, Object detection, quickstart, Azure, AzureML
|
||||
---
|
||||
|
||||
# YOLOv5 🚀 on AzureML
|
||||
|
||||
This guide provides a quickstart to use YOLOv5 from an AzureML compute instance.
|
||||
|
||||
Note that this guide is a quickstart for quick trials. If you want to unlock the full power AzureML, you can find the documentation to:
|
||||
|
||||
- [Create a data asset](https://learn.microsoft.com/azure/machine-learning/how-to-create-data-assets)
|
||||
- [Create an AzureML job](https://learn.microsoft.com/azure/machine-learning/how-to-train-model)
|
||||
- [Register a model](https://learn.microsoft.com/azure/machine-learning/how-to-manage-models)
|
||||
|
||||
## Prerequisites
|
||||
|
||||
You need an [AzureML workspace](https://learn.microsoft.com/azure/machine-learning/concept-workspace?view=azureml-api-2).
|
||||
|
||||
## Create a compute instance
|
||||
|
||||
From your AzureML workspace, select Compute > Compute instances > New, select the instance with the resources you need.
|
||||
|
||||
<img width="1741" alt="create-compute-arrow" src="https://github.com/ouphi/ultralytics/assets/17216799/3e92fcc0-a08e-41a4-af81-d289cfe3b8f2">
|
||||
|
||||
## Open a Terminal
|
||||
|
||||
Now from the Notebooks view, open a Terminal and select your compute.
|
||||
|
||||

|
||||
|
||||
## Setup and run YOLOv5
|
||||
|
||||
Now you can, create a virtual environment:
|
||||
|
||||
```bash
|
||||
conda create --name yolov5env -y
|
||||
conda activate yolov5env
|
||||
conda install pip -y
|
||||
```
|
||||
|
||||
Clone YOLOv5 repository with its submodules:
|
||||
|
||||
```bash
|
||||
git clone https://github.com/ultralytics/yolov5
|
||||
cd yolov5
|
||||
git submodule update --init --recursive # Note that you might have a message asking you to add your folder as a safe.directory just copy the recommended command
|
||||
```
|
||||
|
||||
Install the required dependencies:
|
||||
|
||||
```bash
|
||||
pip install -r yolov5/requirements.txt
|
||||
pip install onnx>=1.10.0
|
||||
```
|
||||
|
||||
Train the YOLOv5 model:
|
||||
|
||||
```bash
|
||||
python train.py
|
||||
```
|
||||
|
||||
Validate the model for Precision, Recall, and mAP
|
||||
|
||||
```bash
|
||||
python val.py --weights yolov5s.pt
|
||||
```
|
||||
|
||||
Run inference on images and videos:
|
||||
|
||||
```bash
|
||||
python detect.py --weights yolov5s.pt --source path/to/images
|
||||
```
|
||||
|
||||
Export models to other formats:
|
||||
|
||||
```bash
|
||||
python detect.py --weights yolov5s.pt --source path/to/images
|
||||
```
|
||||
|
||||
## Notes on using a notebook
|
||||
|
||||
Note that if you want to run these commands from a Notebook, you need to [create a new Kernel](https://learn.microsoft.com/en-us/azure/machine-learning/how-to-access-terminal?view=azureml-api-2#add-new-kernels) and select your new Kernel on the top of your Notebook.
|
||||
|
||||
If you create Python cells it will automatically use your custom environment, but if you add bash cells, you will need to run `source activate <your-env>` on each of these cells to make sure it uses your custom environment.
|
||||
|
||||
For example:
|
||||
|
||||
```bash
|
||||
%%bash
|
||||
source activate newenv
|
||||
python val.py --weights yolov5s.pt
|
||||
```
|
Reference in New Issue
Block a user