update
This commit is contained in:
222
segtrain.py
Normal file
222
segtrain.py
Normal file
@ -0,0 +1,222 @@
|
||||
import os
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
import matplotlib.pyplot as plt
|
||||
import albumentations as albu
|
||||
import torch
|
||||
import segmentation_models_pytorch as smp
|
||||
from torch.utils.data import DataLoader
|
||||
from torch.utils.data import Dataset as BaseDataset
|
||||
|
||||
|
||||
# ---------------------------------------------------------------
|
||||
|
||||
class Dataset(BaseDataset):
|
||||
#CLASSES = ['sky', 'building', 'pole', 'road', 'pavement',
|
||||
# 'tree', 'signsymbol', 'fence', 'car',
|
||||
# 'pedestrian', 'bicyclist', 'unlabelled']
|
||||
|
||||
CLASSES = ['front', 'background']
|
||||
def __init__(
|
||||
self,
|
||||
images_dir,
|
||||
masks_dir,
|
||||
classes=None,
|
||||
augmentation=None,
|
||||
preprocessing=None,
|
||||
):
|
||||
self.ids = os.listdir(images_dir)
|
||||
self.images_fps = [os.path.join(images_dir, image_id) for image_id in self.ids]
|
||||
self.masks_fps = [os.path.join(masks_dir, image_id) for image_id in self.ids]
|
||||
|
||||
# convert str names to class values on masks
|
||||
self.class_values = [self.CLASSES.index(cls.lower()) for cls in classes]
|
||||
|
||||
self.augmentation = augmentation
|
||||
self.preprocessing = preprocessing
|
||||
|
||||
def __getitem__(self, i):
|
||||
|
||||
# read data
|
||||
image = cv2.imread(self.images_fps[i])
|
||||
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
||||
mask = cv2.imread(self.masks_fps[i], 0)
|
||||
|
||||
masks = [(mask == v) for v in self.class_values]
|
||||
mask = np.stack(masks, axis=-1).astype('float')
|
||||
|
||||
if self.augmentation:
|
||||
#print('>>>>>>>{}'.format(image.shape[:2]))
|
||||
sample = self.augmentation(image=image, mask=mask)
|
||||
image, mask = sample['image'], sample['mask']
|
||||
|
||||
if self.preprocessing:
|
||||
sample = self.preprocessing(image=image, mask=mask)
|
||||
image, mask = sample['image'], sample['mask']
|
||||
|
||||
return image, mask
|
||||
|
||||
def __len__(self):
|
||||
return len(self.ids)
|
||||
|
||||
# ---------------------------------------------------------------
|
||||
|
||||
def get_training_augmentation():
|
||||
train_transform = [
|
||||
|
||||
albu.HorizontalFlip(p=0.5),
|
||||
|
||||
albu.ShiftScaleRotate(scale_limit=0.5, rotate_limit=0, shift_limit=0.1, p=1, border_mode=0),
|
||||
|
||||
albu.PadIfNeeded(min_height=320, min_width=320, always_apply=True, border_mode=0),
|
||||
albu.RandomCrop(height=320, width=320, always_apply=True),
|
||||
|
||||
albu.IAAAdditiveGaussianNoise(p=0.2),
|
||||
albu.IAAPerspective(p=0.5),
|
||||
|
||||
albu.OneOf(
|
||||
[
|
||||
albu.CLAHE(p=1),
|
||||
albu.RandomBrightness(p=1),
|
||||
albu.RandomGamma(p=1),
|
||||
],
|
||||
p=0.9,
|
||||
),
|
||||
|
||||
albu.OneOf(
|
||||
[
|
||||
albu.IAASharpen(p=1),
|
||||
albu.Blur(blur_limit=3, p=1),
|
||||
albu.MotionBlur(blur_limit=3, p=1),
|
||||
],
|
||||
p=0.9,
|
||||
),
|
||||
|
||||
albu.OneOf(
|
||||
[
|
||||
albu.RandomContrast(p=1),
|
||||
albu.HueSaturationValue(p=1),
|
||||
],
|
||||
p=0.9,
|
||||
),
|
||||
]
|
||||
return albu.Compose(train_transform)
|
||||
|
||||
|
||||
def get_validation_augmentation():
|
||||
test_transform = [
|
||||
albu.PadIfNeeded(384, 480)
|
||||
]
|
||||
return albu.Compose(test_transform)
|
||||
|
||||
|
||||
def to_tensor(x, **kwargs):
|
||||
return x.transpose(2, 0, 1).astype('float32')
|
||||
|
||||
|
||||
def get_preprocessing(preprocessing_fn):
|
||||
|
||||
_transform = [
|
||||
albu.Lambda(image=preprocessing_fn),
|
||||
albu.Lambda(image=to_tensor, mask=to_tensor),
|
||||
]
|
||||
return albu.Compose(_transform)
|
||||
|
||||
|
||||
# ---------------------------------------------------------------
|
||||
if __name__ == '__main__':
|
||||
|
||||
DATA_DIR = './data/CamVid/'
|
||||
|
||||
if not os.path.exists(DATA_DIR):
|
||||
print('Loading data...')
|
||||
os.system('git clone https://github.com/alexgkendall/SegNet-Tutorial ./data')
|
||||
print('Done!')
|
||||
|
||||
x_train_dir = os.path.join(DATA_DIR, 'train')
|
||||
y_train_dir = os.path.join(DATA_DIR, 'trainannot')
|
||||
|
||||
x_valid_dir = os.path.join(DATA_DIR, 'val')
|
||||
y_valid_dir = os.path.join(DATA_DIR, 'valannot')
|
||||
|
||||
#ENCODER = 'se_resnext50_32x4d'
|
||||
#ENCODER = 'resnet18'
|
||||
ENCODER = 'mobilenet_v2'
|
||||
ENCODER_WEIGHTS = 'imagenet'
|
||||
CLASSES = ['front', 'background']
|
||||
ACTIVATION = 'sigmoid' # could be None for logits or 'softmax2d' for multiclass segmentation
|
||||
DEVICE = 'cuda'
|
||||
|
||||
#model = smp.UnetPlusPlus(
|
||||
model = smp.Unet(
|
||||
encoder_name=ENCODER,
|
||||
encoder_weights=ENCODER_WEIGHTS,
|
||||
classes=len(CLASSES),
|
||||
activation=ACTIVATION,
|
||||
)
|
||||
|
||||
preprocessing_fn = smp.encoders.get_preprocessing_fn(ENCODER, ENCODER_WEIGHTS)
|
||||
|
||||
train_dataset = Dataset(
|
||||
x_train_dir,
|
||||
y_train_dir,
|
||||
augmentation=get_training_augmentation(),
|
||||
preprocessing=get_preprocessing(preprocessing_fn),
|
||||
classes=CLASSES,
|
||||
)
|
||||
|
||||
valid_dataset = Dataset(
|
||||
x_valid_dir,
|
||||
y_valid_dir,
|
||||
augmentation=get_validation_augmentation(),
|
||||
preprocessing=get_preprocessing(preprocessing_fn),
|
||||
classes=CLASSES,
|
||||
)
|
||||
|
||||
train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True, num_workers=0)
|
||||
valid_loader = DataLoader(valid_dataset, batch_size=1, shuffle=False, num_workers=0)
|
||||
|
||||
loss = smp.utils.losses.DiceLoss()
|
||||
metrics = [
|
||||
smp.utils.metrics.IoU(threshold=0.5),
|
||||
]
|
||||
|
||||
optimizer = torch.optim.Adam([
|
||||
dict(params=model.parameters(), lr=0.0001),
|
||||
])
|
||||
|
||||
train_epoch = smp.utils.train.TrainEpoch(
|
||||
model,
|
||||
loss=loss,
|
||||
metrics=metrics,
|
||||
optimizer=optimizer,
|
||||
device=DEVICE,
|
||||
verbose=True,
|
||||
)
|
||||
|
||||
valid_epoch = smp.utils.train.ValidEpoch(
|
||||
model,
|
||||
loss=loss,
|
||||
metrics=metrics,
|
||||
device=DEVICE,
|
||||
verbose=True,
|
||||
)
|
||||
|
||||
max_score = 0
|
||||
|
||||
for i in range(0, 100):
|
||||
|
||||
print('\nEpoch: {}'.format(i))
|
||||
train_logs = train_epoch.run(train_loader)
|
||||
valid_logs = valid_epoch.run(valid_loader)
|
||||
|
||||
if max_score < valid_logs['iou_score']:
|
||||
max_score = valid_logs['iou_score']
|
||||
torch.save(model, './best_model.pth')
|
||||
print('Model saved!')
|
||||
|
||||
if i == 25:
|
||||
optimizer.param_groups[0]['lr'] = 1e-5
|
||||
print('Decrease decoder learning rate to 1e-5!')
|
Reference in New Issue
Block a user